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This paper presents a one-parameter representation of credit risk and transition matrices. We start 
with the CreditMetrics view that ratings transition matrices result from the “binning” of a standard 
normal random variable X that measures changes in creditworthiness. We further assume that X splits 
into two parts:  (1) an idiosyncratic component Y, unique to a borrower, and (2) a systematic compo-
nent Z, shared by all borrowers. Broadly speaking, Z measures the “credit cycle,” meaning the values 
of default rates and of end-of-period risk ratings not predicted, using historical average transition 
rates, by the initial mix of credit grades. In good years Z will be positive, implying for each initial 
credit rating, a lower than average default rate and a higher than average ratio of upgrades to down-
grades. In bad years, the reverse will be true. We describe a way of estimating Z from the separate 
transition matrices tabulated each year by Standard & Poor’s (S&P) and Moody’s. Conversely, we 
describe a method of calculating transition matrices conditional on an assumed value for Z.

The historical pattern of Z depicts past credit conditions. For example, Z remains negative for most 
of 1981–89. This mirrors the general decline in credit ratings over that period. In 1990–91, Z drops 
well below zero as the U.S. suffers through one of its worst credit crises since the Great Depression. 
The relatively high proportion of lower grade credits inherited from the 1980s together with the 
1990–91 slump (Z < 0) accounts for the high number of defaults. Over 1992–97, Z has stayed positive 
and credit conditions have remained benign. The movements of Z over the past 10 years correlate 
closely with loan pricing.

Our focus is on how Z affects credit rating migration probabilities. However, one can also model the 
effect of Z on the probability distribution of loss in the event of default (LIED), on credit par spreads, 
and ultimately on the value of a commercial loan, bond, or other instrument subject to credit risk. By 
parametrically varying Z, one can perform stress testing to assess the impact of changing credit con-
ditions on the value of an individual credit instrument or an entire credit portfolio to changing credit 
conditions. One can also quantify how volatility in Z translates into transaction and portfolio value 
volatility.

1. Defining Z risk

Following the CreditMetrics approach described by Gupton, Finger, and Bhatia (1997), we assume 
that ratings transitions reflect an underlying, continuous credit-change indicator X. We further as-
sume that X has a standard normal distribution. Then, conditional on an initial credit rating G at the 
beginning of a year, we partition the X values into a set of disjoint bins .1 To simplify 
references, we use the indices G and g to represent sequences of integers rather than letters or other 
symbols. We then define the bins such that the probability of X falling within a given interval equals 
the corresponding historical average transition rate (see Chart 1).

1 We observe an inconsistency among the bins for different initial ratings. For an initial borrower rating of G0, consider suc-
cessive yearly values for X of x1 and x2, in which x1 implies a rating change to G1 and x2 a change to G2. We will not find, 
in general, that an X value of x1+x2 in the first year implies a rating change from G0 to G2.
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Chart 1 
Relationship between continuous credit index X and rating transitions
Historical average transition rates determine bin thresholds

We write the conditions defining the bins as follows:

[1]

in which P(G, g) denotes the historical average G-to-g transition probability and Φ(.) represents the 
standard normal cumulative distribution function. The default bin D has a lower threshold of −∞. The 
AAA bin has an upper threshold of +∞. The remaining thresholds are fit to the observed transition 
probabilities. 

Suppose there are N ratings categories, including default. Then there are N − 1 initial grades, which 
represent all the ratings, excluding default. For each of those initial grades, we observe N − 1 histor-
ical average transition rates. The Nth value results from the condition that the probabilities sum to 1. 
We must determine N − 1 threshold values defining the bins. Thus, we can solve for all of the bin 
boundaries. 

We illustrate the process below. The starting point is the smoothed version of the 1981–97 historical 
average transition matrix tabulated by S&P for 8 grades, including default (see Table 1). The corre-
sponding bins are computed using Eq. [1].2

2 The smoothing applied to the matrix enforces default rate monotonicity, row and column monotonicity and several of the 
other regularity conditions listed in the CreditMetrics™—Technical Document. Default rate monotonicity means that 
default rates rise as credit ratings go down. Row and column monotonicity means that transition rates fall as one moves 
away from the main diagonal along either a row or a column. We note one exception to this rule. Default is a trapping 
state. Thus, the default rate may rise above the probability of transition to neighboring non-default states.
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Consider transitions from BBB. We observe a 15 bp default rate. Using the inverse probability func-
tion for a standard normal distribution, we compute a value of about −2.97 for the upper threshold 
for the default bin. Next consider the CCC bin. We get a value of about 25 bp for the sum of transition 
rates to CCC or to default. Again applying the inverse probability function, we get an upper threshold 
value for CCC of about −2.81. Now consider B. We compute a probability of about 1.3 percent for 
transitions to B or to lower grades. Once again applying the inverse probability function, we get an 
upper threshold value of −2.23. Continuing in this way for each terminal and each initial grade, we 
derive all of the bin values.

As in Belkin, Suchower, and Forest (1998), we decompose X into two parts:  (1) a (scaled) idiosyn-
cratic component Y, unique to a borrower, and (2) a (scaled) systematic component Z, shared by all 
borrowers. Thus, we write

[2]

We assume that Y and Z are unit normal random variables and mutually independent.3 The parameter 
ρ (assumed positive) drives the correlation between Z and X; Z explains a fraction ρ of the variance 
of X.

In any year, the observed transition rates will deviate from the norm (Z = 0). We can then find a value 
of Z such that the probabilities associated with the bins defined above best approximate the given 
year’s observed transition rates (see Chart 2). 

3 The variate Z actually changes from year to year, and is modeled as following a stochastic process; therefore, it is more 
proper to denote it by Zt. A reasonable stochastic model is the Ornstein-Uhlenbeck (O-U) process  

with parameters β (reciprocal of time constant) and σ (volatility);  Wt is a standard Wiener pro-
cess. The O-U process is mean reverting (capturing the analogous property of the business cycle) and has a limiting sta-
tionary Gaussian distribution. The condition σ2/2β = 1 is imposed to insure that the stationary distribution has unit 
variance. See Arnold (1974) for a discussion of the O-U process. 

Table 1
Smoothed historical average transition matrix and associated bins

Initial
rating

End-of-year credit rating

AAA AA A BBB BB B CCC D

Smoothed historical 
average transition ma-
trix

AAA 91.13% 8.00% 0.70% 0.10% 0.05% 0.01% 0.01% 0.01%

AA 0.70% 91.03% 7.47% 0.60% 0.10% 0.07% 0.02% 0.01%

A 0.10% 2.34% 91.54% 5.08% 0.61% 0.26% 0.01% 0.05%

BBB 0.02% 0.30% 5.65% 87.98% 4.75% 1.05% 0.10% 0.15%

BB 0.01% 0.11% 0.55% 7.77% 81.77% 7.95% 0.85% 1.00%

B 0.00% 0.05% 0.25% 0.45% 7.00% 83.50% 3.75% 5.00%

CCC 0.00% 0.01% 0.10% 0.30% 2.59% 12.00% 65.00% 20.00%

Bins corresponding to 
smoothed historical 
average transition ma-
trix

AAA (∞, −1.35) [−1.35, −2.38) [−2.38, −2.93) [−2.93, −3.19) [−3.19, −3.54) [−3.54, −3.72] [−3.72, −3.89) [−3.89, −∞)

AA (∞, 2.46) [2.46, −1.39) [−1.39, −2.41) [−2.41, −2.88) [−2.88, −3.09) [−3.09, −3.43) [−3.43, −3.72) [−3.72, −∞)

A (∞, 3.10) [3.10, 1.97) [1.97, −1.55) [−1.55, −2.35) [−2.35, −2.73) [−2.73, −3.24) [−3.24, −3.29) [−3.29, −∞)

BBB (∞, 3.50) [3.50, 2.73) [2.73, 1.56) [1.56, −1.55) [−1.55, −2.23) [−2.23, −2.81) [−2.81, −2.97) [−2.97, −∞)

BB (∞, 3.89) [3.89, 3.05) [3.05, 2.48) [2.48, 1.38) [1.38, −1.29) [−1.29, −2.09) [−2.09, −2.33) [−2.33, −∞)

B (∞, 4.11) [4.11, 3.29) [3.29, 2.75) [2.75, 2.43) [2.43, 1.42) [1.42, −1.36) [−1.36, −1.64) [−1.64, −∞)

CCC (∞, 4.27) [4.27, 3.72) [3.72, 3.06) [3.06, 2.64) [2.64, 1.88) [1.88, 1.04) [1.04, −0.84) [−0.84, −∞)

X 1 ρ– Y ρZ+=

dZt βZtdt– σdWt+=
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Chart 2 
Illustration of the Z value for a particular initial rating in a given year

We label that value of Z for year t, Zt.
4 We determine Zt so as to minimize the weighted, mean-

squared discrepancies between the model transition probabilities and the observed transition proba-
bilities.

For this we define

[3] .

This is the fitted value for the G-to-g transition rate in year t. Then for a fixed ρ and a fixed t, the 
least-squares problem takes the form

[4]
 ,

4 It can be shown that one recovers the historical average transition matrix by integrating the transition matrices conditioned 

on Zt = z with respect to the stationary unit normal distribution for z. Thus, the historical average matrix is the expectation 

of the conditioned matrices over all possible values of Z.
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where Pt (G, g) represents the G-to-g transition rate observed in year t and  is the number of tran-
sitions from initial grade G observed in that year. In this formula, we weight observations by the in-
verses of the approximate sample variances of Pt (G, g).5 

Since we do not know the value of ρ a priori, we estimate it as follows. We apply the minimization 
in Eq. [4] for 1981–97 using an assumed value of ρ. We then obtain a time series for Zt conditional 
on ρ and compute the mean and variance of this series. We repeat this process for many values of ρ, 
and use a numerical search procedure to find the particular ρ value for which the Zt time series has 
variance of one. 

We illustrate this process of solving for Zt at a single time t. We start with the S&P transition matrix 
observed for 1982 (see Table 2). We hold fixed the bins determined from the historical average ma-
trix (Table 1) and fix ρ at the value determined by the search process, i.e.,  .0163. The indicated value 
for Zt of –0.89 provides the best fit to the observed 1982 transition rates. 

5

In Eq. [4], we normalize each squared deviation by the factor . This weighting fac-

tor represents the sample variance for the G-to-g transition rate under a binomial sampling approximation such that “suc-

cess” is the occurrence of a G-to-g transition and “failure” is any other transition. A full multinomial treatment would 

account for the constraint that the sample transition rates across a row must sum to one.

Broadly speaking, Zt measures the “credit cycle,” meaning the values of default rates and of end-of-
period risk ratings not predicted (using historical average transition rates) by the initial mix of credit 
grades. In good years Zt will be positive, implying for each initial credit rating a lower than average 
default rate and a higher than average ratio of upgrades to downgrades. In bad years, the reverse will 
be true.

nt G,

xg 1+
G xg
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nt G,
----------------------------------------------------------------------------------------------------

Table 2 
S&P transition matrix for 1982 and calculations leading to Z estimate

Statistic
Initial
rating # Obs.

End-of-year credit rating
AAA AA A BBB BB B CCC D

Observed transition matrix AAA 85 92.94% 4.71% 2.35% 0.00% 0.00% 0.00% 0.00% 0.00%
AA 220 0.46% 92.52% 6.08% 0.47% 0.47% 0.00% 0.00% 0.00%
A 480 0.00% 4.45% 84.95% 9.54% 0.64% 0.00% 0.00% 0.42%
BBB 298 0.37% 0.37% 3.26% 85.52% 9.78% 0.37% 0.00% 0.34%
BB 168 0.00% 0.68% 0.00% 2.68% 82.42% 10.05% 0.00% 4.17%
B 161 0.00% 0.00% 0.72% 0.72% 2.89% 87.50% 5.06% 3.11%
CCC 16 0.00% 0.00% 0.00% 0.00% 0.00% 7.39% 73.86% 18.75%

Fitted transition matrix AAA 85 89.34% 9.54% 0.89% 0.13% 0.07% 0.01% 0.01% 0.01%

AA 220 0.48% 89.56% 8.93% 0.77% 0.13% 0.09% 0.03% 0.01%

A 480 0.06% 1.72% 90.88% 6.14% 0.78% 0.34% 0.01% 0.07%

BBB 298 0.01% 0.20% 4.39% 88.03% 5.72% 1.33% 0.13% 0.20%

BB 168 0.00% 0.07% 0.38% 6.19% 81.63% 9.39% 1.06% 1.29%

B 161 0.00% 0.03% 0.17% 0.32% 5.56% 83.41% 4.38% 6.14%

CCC 16 0.00% 0.01% 0.06% 0.20% 1.94% 10.09% 64.53% 23.16%

Z value −0.89
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2. Zt’s historical patterns

Zt’s historical movements describe past credit conditions not evident in the initial mix of ratings (see 
Chart 3). Zt’s history is erratic, more so than the term “credit cycle” suggests. In particular, the fluc-
tuations do not show a stable sinusoidal pattern.

Chart 3 
Zt as estimated from S&P annual transition matrices

Zt is mostly negative over 1981–89. Credit ratings generally declined over that period as many cor-
porations increased leverage. In 1990–91, Zt drops below zero, as the U.S. suffers through one of its 
worst credit crises since the Great Depression. The relatively high proportion of lower grade credits 
inherited from the 1980s together with the 1990–91 credit slump (Zt < 0) accounts for a high number 
of defaults. Over the period 1992–97, Zt has stayed positive and credit conditions have remained be-
nign.

Loan prices over the past 10 years correlate quite closely with the credit indicator Zt (see Chart 4). 
One observes that loan spreads have generally lagged abrupt changes in credit conditions.
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Loan spreads in North America and Europe over the past 2–3 years have remained near record lows. 
This suggests that the past 6 years of favorable credit conditions have made many lenders optimistic 
about the future. One might ask whether the past patterns exhibited by Zt justify this optimism or any 
other forecast of credit conditions.

Applying the weighted least-squares scheme for estimating the Zt, we get a ρ value of 0.0163. Thus, 
systematic credit migration risk accounts for only about 1.6% of total credit migration risk over the 
period 1981–97. This contrasts with equity price data, which suggests that systematic risk accounts 
for about 25 percent of the total variance in an average company’s stock price. Still, the seemingly 
small estimated variations in Zt translate into substantial swings in default and downgrade rates (see 
the discussion following Table 3 on page 54).

The discrete time counterpart to the O-U model is a first-order autoregressive process. We fitted such 
a model for Zt to the data for the 1982–97 period and obtained the following:

[5] .

Here εt is a standardized white noise sequence. The sample mean of the Zt values is −0.16, which is 

statistically consistent with the assumption that the Zt process has zero mean. From Eq. [5] we obtain 

the sample estimates β = .54 yr−1 and σ = 1.04 yr−1/2 for the O-U process parameters. Thus, the Zt 

process has an estimated mean relaxation time of about 2 years and an estimated annual volatility of 

about 1. 

We performed several statistical tests on Eq. [5] for model goodness of fit. The sample estimate of 
the mean of the Zt process mean is −0.16, with a standard error of 0.25. As a result, there is no sta-

Chart 4 
Zt index and BB spreads

* Source:  Loan Pricing Corporation.
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tistical basis to reject the hypothesis that the Zt process has zero mean. Based on a t-statistic value of 
2.18, the hypothesis that there is no mean reversion (i.e., that β = 0) can be rejected at the .025 sig-
nificance level. The Kolmogorov-Smirnov test statistic for the model residuals has a value of 
d = .17, indicating that the residuals are statistically indistinguishable from a white noise sequence 
(α = .71).

The calculated R2 for the model in Eq. [5] is .24, indicating that a first-order autoregressive model 
for the Zt has modest predictive power.6 However, the utility of the model is not in predicting future 
values of Zt. Rather, it is to quantify how the variability in Zt that is predictable and the variability 
in Zt that is not predictable each influence credit risk and the pricing of that risk. 

3. Determining transition matrices as functions of Zt

We have already described a way of imputing the Zt variable from observed transition matrices. By 
inverting this process, we can determine transition matrices from values of Zt.

We again use the bin values xG for each initial grade G and end-of-year grade g. Now, conditional on 
Zt, we compute the probability of a G-to-g transition as 

[6]

Table 3 shows matrices for a good year (Zt = 1), an average year (Zt = 0), and a bad year (Zt = −1). 
Note that an absolute value of 1 for Zt represents a 1-standard deviation variation from “normal” 
credit conditions. 

6  The R2 for a second-order autoregressive model is only .33, so going to a higher order model adds little in the way of pre-
dictive power. The simply reality is that the Zt process, at least over the 17-year historical period analyzed, is quite vola-
tile. 
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One observes here significant variation in the migration probabilities between the good, average, and 
bad years, particularly off the main diagonal. For example, the default probability starting in grade 
B is .0486 in an average year but increases to .063 in a bad year and drops to .037 in a good year. In 
relative terms these are about 30% variations. Consequently, the effect of systematic risk on migra-
tion probabilities is significant. 

4. Applications

The Z variable and its related formulas provide a simple one-factor description of credit portfolio risk 
and credit pricing. On the pricing side, changes in credit spreads for a given grade reflect shifting 
expectations regarding expected and unexpected loss. By “unexpected loss,” we mean the premium 
(over expected loss) that a loan must pay to compensate for its contribution to volatility in a well-
diversified portfolio. 

We can explain changes in credit spreads using Z. Suppose that the expected value of Z increases. 
Then the anticipated transition rates to default and to near default go down. The probability distribu-
tion for LIED can shift downward (and change shape) as well. The effect is that both expected and 
unexpected losses fall, lowering credit spreads. Suppose, alternatively, that the expected value of Z 
decreases. Expected and unexpected losses go up, raising credit spreads. Thus, we can relate spread 
volatility to changes in expected credit conditions. 

Given a stochastic specification for Z, we can incorporate spread volatility into loan pricing models. 
We are currently modifying KPMG’s Loan Analysis SystemSM by incorporating Z risk along with its 

Table 3 
Transition matrices computed using Z parameterization

Statistic
Initial 
rating

End-of-year credit rating

AAA AA A BBB BB B CCC D
Calculated transition matrix for good 
year (Zt = 1)

AAA 93.17% 6.25% 0.47% 0.06% 0.03% 0.01% 0.00% 0.00%

AA 0.95% 92.72% 5.81% 0.41% 0.06% 0.04% 0.01% 0.01%

A 0.14% 3.02% 92.33% 3.88% 0.42% 0.17% 0.01% 0.03%

BBB 0.03% 0.41% 7.03% 88.00% 3.65% 0.73% 0.06% 0.09%

BB 0.01% 0.15% 0.73% 9.50% 82.00% 6.32% 0.61% 0.67%

B 0.00% 0.07% 0.34% 0.59% 8.58% 83.68% 3.03% 3.70%

CCC 0.00% 0.01% 0.14% 0.40% 3.30% 14.12% 65.60% 16.42%
Calculated transition matrix for 
average year (Zt = 0)

AAA 91.31% 7.87% 0.67% 0.09% 0.05% 0.01% 0.00% 0.00%

AA 0.66% 91.24% 7.34% 0.57% 0.09% 0.06% 0.02% 0.01%

A 0.09% 2.26% 91.79% 4.98% 0.58% 0.24% 0.01% 0.05%

BBB 0.02% 0.28% 5.52% 88.28% 4.66% 1.01% 0.09% 0.14%

BB 0.00% 0.10% 0.52% 7.63% 82.13% 7.84% 0.82% 0.95%

B 0.00% 0.04% 0.23% 0.43% 6.87% 83.85% 3.71% 4.86%

CCC 0.00% 0.01% 0.09% 0.28% 2.51% 11.91% 65.39% 19.81%
Calculated transition matrix for bad 
year (Zt = −1)

AAA 89.09% 9.75% 0.92% 0.14% 0.07% 0.01% 0.01% 0.01%

AA 0.46% 89.34% 9.13% 0.79% 0.14% 0.10% 0.03% 0.01%

A 0.06% 1.66% 90.75% 6.28% 0.80% 0.35% 0.01% 0.07%

BBB 0.01% 0.19% 4.27% 87.96% 5.85% 1.37% 0.14% 0.21%

BB 0.00% 0.07% 0.37% 6.03% 81.53% 9.58% 1.09% 1.33%

B 0.00% 0.03% 0.16% 0.31% 5.42% 83.32% 4.47% 6.30%

CCC 0.00% 0.00% 0.06% 0.20% 1.88% 9.88% 64.39% 23.58%
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effect on rating migration probabilities, on the distribution of LIED, and on par credit spreads. In ad-
dition, we are including Z risk as one of the factors in a multifactor model for the interest rate term 
structure.

The Z variable provides a simple way of running credit scenarios. For example, one might want to 
simulate the value of a credit portfolio under conditions similar to those in 1990–91. To accomplish 
this, one would run a two-year simulation, setting Z equal to its 1990 value in year 1 and to its 1991 
value in year 2. One would compute the associated transition matrices and use those matrices in cal-
culating credit value-at-risk.

Alternatively, one could run a large number of simulations drawing Z from a time series model, such 
as the O-U process. This would provide valuable insight into how volatility in Z in response to chang-
ing credit conditions induces volatility in the mark-to-market value of a credit portfolio. 

In closing, we note that Z offers only a one-factor explanation of credit risk. International data sug-
gest that one needs several factors to describe credit risk globally. The assumption that a single factor 
can satisfactorily represent all systematic risk in valuing a credit portfolio needs to be tested by com-
paring model predictions of mark-to-market prices with observed market prices.

5. Summary

We have described a one-parameter representation of credit risk and transition matrices in the form 
of a single systematic credit factor Z. The historical record of Z provides a succinct description of 
past credit conditions. We have described a stochastic process model for Z and a way of estimating 
Z from past ratings transition matrices and applied the method to rating migration data for the period 
1983–97.

Our results indicate that specific risk dominates systematic risk in terms of explaining the variance 
of X, the continuous variate that governs credit migration under the CreditMetrics model. Nonethe-
less, Z has a significant effect on migration probabilities, and the framework that we described can 
be used to stress test a credit portfolio, i.e., to quantify the impact of changing credit conditions on 
individual transaction value and portfolio value.

The Z variate can be incorporated into models for stochastic LIED and stochastic par credit spreads. 
It also provides a basis for modeling the correlation between credit migration and interest rates, for-
eign currency exchange rates, and other market variables subject to systematic risk.

The information provided here is of a general nature and is not intended to address the specific cir-
cumstances of any individual or entity.  In specific circumstances, the services of a professional 
should be sought.  The views and opinions are those of the authors and do not necessarily represent 
the views and opinions of KPMG Peat Marwick LLP.
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