Overview of Dual PIT/TTC Ratings Systems

Dr. Scott D. Aguais
Managing Director & Global Head of Wholesale Risk Models, Royal Bank of Scotland
March 20, 2013 – Presented to Risk Annual Summit -- 2013
Overview – Dual PIT vs TTC Ratings

Agenda

- Key PIT/TTC Presentation Points Highlighted
- Credit Cycles Exist & Can Be Measured
- Background on ‘As Is’ Ratings Systems vs Dual PIT/TTC Ratings
- Using a PIT/TTC Ratings Framework to Develop a Portfolio-Wide Stress Test Approach Which is Based on Credit Cycle Behaviour
- Key PIT/TTC Presentation Points Summarized
Systematic Credit Cycles are real & they can be empirically measured – their existence motivates Dual PIT/TTC Ratings approaches.

Dual ratings support multiple business objectives – for credit ratings, ‘one size does not fit all’ – capital stability vs. ‘know your real risk’.

Current, legacy credit models do not incorporate empirical credit cycles, they assume systematic factors follow a random walk – moving to a dual rating approach represents a true ‘Kuhnian paradigm shift’.

Dual PIT/TTC ratings are a ‘framework’ – they can be implemented bank-wide.

Wholesale ratings implementation – requires enhanced risk culture, empirically better PD models, & leverages advanced ‘batch’ automation across risk & portfolio management functions.

Portfolio-wide stress testing capabilities are straight-forward to develop once you have developed the PIT/TTC credit-cycle framework.

Provides one consistent framework for stressing PIT PDs, LGD & EAD.
Global Credit Deteriorated Rapidly Starting in Mid-2007

Systematic Credit Cycles are Prominent in Corp Defaults, Losses & KMV EDFs

Various Credit Cycles Indices Derived from Various PD, Rating & Loss Measures
MKMV EDFs, S&P Default Rates & C&I Loss Rates

‘Z-Gap’

‘Good’ Credit Conditions

Neutral Credit Conditions

‘Bad’ Credit Conditions

Overview of PIT/TTC Ratings Systems
A Component of Credit Cycles is Predictable

Predicting Roughly 20% of the Systematic Cycle is the Foundation of PIT/TTC Ratings

Legacy Credit Models Are Blind (‘Empty Glass’) to the Predictable Systematic Component of Cycles

Current Models Assume Credit Factors Follow a Random Walk

Source: Moody’s KMV, RBS Research
Managing Real Risk vs Managing Capital Stability

Multiple Business Objectives Require Multiple Views of Credit Risk

- Dual ratings first developed in 2003/4 as preparation for Basel II – implemented in 2005 under the AIRB Waiver of a large UK Bank

- In most Banks today, internal ratings (PDs) are ‘hybrid’ indicators which are mostly calibrated to ‘Through-the-Cycle (TTC) credit conditions

- But successful Capital Management (Basel II) & Credit Risk Management requires multiple, well-defined views of default risk:
 - 1-Year expected loss prediction – 1-Yr PIT
 - Regulatory Capital under Basel II – 1-Yr TTC
 - Economic Capital (Aggregate) – 1-Yr TTC
 - Discretions/Limits – 1-Yr TTC
 - IFRS – ‘Life of the Loan EL Accounting Measures’ - PIT
 - Risk/Reward & Credit Pricing – PIT PD Term Structures (Including predicted credit cycles)

- A Dual-PD Approach including both ‘pure’ PIT & TTC measures is required to support the bank’s broad objectives:
 - Capital Stability not Pro-Cyclicality -- TTC
 - ‘Know Your True Risk’ -- PIT
Current Issues vs Objectives With Wholesale Credit Ratings

Current Issues -- At most banks, existing credit ratings are hybrid indicators:

- **No credit cycle** – understate or ignore the cycle & therefore they fail to track broad changes in risk over time,
- **Apples to Oranges** -- provide inconsistent measures, with the same grade implying different PDs for different asset classes,
- **Too Static & Not Dynamic Enough** -- get refreshed infrequently (‘fire and forget’) -- so can be late in signalling financial distress,
- **Less Accurate Empirically** -- show less counterparty-specific variability than other indicators with better track records
- **Multiple PDs Required for Multiple Objectives**. – almost all banks have one rating or PD measure

Objectives -- Develop a Dual-PD Ratings approach to more accurately & timely PDs & grades on both a PIT and TTC basis:

- Consistently supports multiple regulatory, risk & portfolio management objectives
- Each PD model needs to be classified as PIT, TTC or Hybrid
- Requires reasonable granularity & spacing in a bank’s PD Master Scale
- Converts all current PD models in ‘batch mode’ to both 100% PIT & 100% TTC PDs -- creating apples to apples’ & ‘oranges to oranges’ comparisons
- Explicitly incorporates measureable credit cycles to perform the PIT/TTC conversions -- forecasts credit cycles going forward to form unconditional PD term-structures
Impact of Systematic Credit Cycles – PIT PDs Move Much More than TTC PDs

‘Point-in-Time’ vs ‘Through-the-Cycle’ PDs or Ratings:

- ‘PIT’ PDs over 1-year represent ‘current credit conditions’ & reflect movements in systematic credit cycles
- ‘TTC’ PDs over 1-year represent ‘average credit conditions’ & are developed using long-run average historical calibrations -- they are ‘conditionally neutral’ to systematic credit cycles

Average PDs

- ‘Bad’ Credit Conditions
- ‘Good’ Credit Conditions
- Average TTC PDs

Impact of Systematic Credit Cycles

Average PIT PD

Overall Portfolio

Time

Measuring ‘Real Risk’ vs a ‘Conditional Fiction’ (TTC)
Empirical Evidence Supports PIT/TTC Ratings

Measuring Systematic Credit Cycles Has a Strong Empirical Foundation

Empirical Support for Believing in Systematic Credit Cycles – ‘20% Full Glass’

- Naked Eye!

- Unemployment rates, inflation rates, relative commodity prices, relative currency values & interest rates are often found to exhibit mean reversion – evidence also found in equity indexes

- Three empirical tests support the existence of credit cycles:
 1. Forecast equations for systematic Z credit factors show statistically significant mean reversion & momentum
 2. In-sample simulations across a naïve model (no credit cycles) & estimated Z models shows statistically significant MSE reductions
 3. Out-of-sample – out-of-time back-testing results also demonstrate the validity of credit cycles
Developing the Most Empirically Accurate PD Models Requires Credit Cycle Measures

Rated Corporate Defaults Exhibit Strong PIT Cycles

Annualized Quarterly DR: 3-qtr Moving Average - Corporates

Source: Moody’s & S&P
But Banks Use Primarily ‘Hybrid’ or Mostly TTC Ratings

Obligor-Specific PD Models Come in Various ‘Flavours’

“100% PIT”

MKMV EDFs

MKMV EDFs are the benchmark for 100% PIT because they reflect credit cycles immediately through equity prices & they closely track realized default rates.

“Hybrid PIT/TTC”

Most Bank Internal Grades

Agency Ratings

Agency Ratings have historically been 70% TTC & 30% PIT as the ratings do migrate somewhat due to credit cycle movements.

“100% TTC”

70/30 On Average

Scorecard PD models are generally 100% TTC by definition & they understate credit cycles because they place little weight on data that tracks temporal variations in default rates – for this reason they are relative indicators.

What Makes a PD Model PIT or TTC?
Applying Credit Cycle Adjustments to the Various Large-Corp PD Model

<table>
<thead>
<tr>
<th>Modelling Options</th>
<th>PIT</th>
<th>‘Hybrid’</th>
<th>TTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Legacy’ Additive Scorecard</td>
<td>PIT PD</td>
<td>Model TTC PD</td>
<td></td>
</tr>
<tr>
<td>PIT/TTC With Existing Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agency ‘Replication’</td>
<td>Agency PIT PD</td>
<td>Agency 70/30 implied LR avg DR</td>
<td>Agency TTC PD</td>
</tr>
<tr>
<td>Use Agencies Directly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial-Based Default Model</td>
<td>M-KMV EDF</td>
<td>MKMV TTC PD</td>
<td></td>
</tr>
<tr>
<td>Use MKMV EDFs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Credit Cycle Adjustments Yield Two Views of Risk

Focus on Large-Corp Ratings – Credit Cycle Indices Lead to ‘Pure’ PIT & TTC Ratings
Modelling Systematic Credit Cycles

Systematic Factors for Industry Sector & Region are Combined to Credit Cycle Indices

Industry Sector Z_S

Aerospace & Defence
Banking
Chemicals & Plastic Products
Construction
Consumer Products
Oil & Gas
Finance, Real Estate & Insurance
Hotels & Leisure
Basic Industries
Machinery & Equipment
Media
Medical
Steel & Metal Products
Mining
Motor Vehicle & Parts
Retail & Wholesale Trade
Business & Consumer Services
Technology
Transportation
Utilities
Commercial Real Estate

Spot Median $Z_{S/R}$ Gap
LR Median $Z_{S/R}$ Gap

Regional Z_R (Corp/FI)

Asia
Continental Europe
United Kingdom
Latin America
North America
Pacific

Overview of PIT/TTC Ratings Systems
Credit Cycle Behavior (Z or Z-Gap) is Driven by Two Competing Influences – Mean Reversion & Momentum

Most Data Exhibiting Credit Cycles Shows Two Competing Empirical Influences
Systematic vs Idiosyncratic Changes in Credit Risk

Relationship Between PIT vs TTC Default Distance

- For an obligor, TTC change is synonymous with idiosyncratic (company-specific) variation

\[
PIT = CYCLE + TTC \Rightarrow \Delta PIT = \Delta CYCLE + \Delta TTC
\]

- TTC PDs Impacted by Only the Borrower Idiosyncratic Factor
- PIT PDs Impacted by Both the Systematic & Idiosyncratic Factors
Examples of Industry Credit Cycle Index Z-Gaps

Banking, & Finance, Insurance & Real Estate

Source: Moody’s KMV, RBS Research

Overview of PIT/TTC Ratings Systems
Examples of Industry Credit Cycle Index Z-Gaps

Basic Industries, Mining, Oil & Gas, Steel & Metal Products, Utilities

Source: Moody’s KMV, RBS Research
Examples of Industry Credit Cycle Index Z-Gaps

Hotels & Leisure, Media, Technology, Transportation, Retail & Wholesale Trade

Source: Moody’s KMV, RBS Research
Examples of Region Credit Cycle Index Z-Gaps

Corporates – Asia, Europe, UK, Latin-America, North-America, Pacific & South Africa

Source: Moody’s KMV, RBS Research
Examples of Industry Credit Cycle Index Z-Gaps

EDFs for BBB Rated S&P Companies Move Substantially

MKMV EDFs for S&P BBB Rated Companies (Non-FIs)
-- NA, EU&UK and APAC

Source: S&P, Moody’s KMV, RBS Research
Predicted Credit Downturn in the Hotel/Leisure Sector Occurred Later But Was More Rapid When it Did Occur

Industry Z – Hotel/Leisure Sector – Rapid Declines in Z Behaviour Caught up With the Ex Anta Forecast

Source: Moody’s KMV, PIT/TTC research
Utilizing PIT PD Framework for Portfolio-Wide Stress Testing:

- Developed & applied portfolio-wide or more narrowly for industries, regions or obligor types
- Approach is Banking-Book-centric with simplified Trading-Book assumptions until a full integrated market & credit risk factor structure is completed
- Converts ‘unconditional’ PIT PDs into ‘conditional’ PIT PDs to most accurately stress PDs
- Utilizes forecasts of macro risk factors (currently GDP & Equity Indexes) to summarize implications of a ‘stress’ macro scenario on portfolio credit conditions broadly
- Estimates statistical models between ‘Macro-Z’ factors & Z-industry/regions
- Applies a ‘Macro-Merton’ approach – therefore it is consistent with corporate PD modelling
- Develops conditional, ‘stress’ PIT PD term structures on a multi-year basis
- Implemented in ‘batch mode’ – sits right on top of the normal PIT PD batch process
Additional Components of the Credit-Cycle Based Stress Test Approach

(1) Develop credit-cycle based, systematic stress scenarios for EAD & LGD:

- EAD & LGD models estimated to include Z-Gap credit cycles
 - Stress LGD = f(LGD risk factors, region/sector Z-Gap)
 - Stress EAD = f(EAD risk factors, region/sector Z-Gap)
- Applying deterministic, stress scenarios to EAD & LGD provide stress values consistent with the stress PIT PD scenarios – all drive off the same Macro Z drivers

(2) Develop Qualitative Overlay to statistical models:

- Bridge from actuarial view to provision/accounting view – match stress default rates by setting some counterparty PDs to 100% and all the rest to zero
- Apply ‘add-factor’ approach to industry or region losses
- Solicit Credit Officer input by region, sector or counterparty

Consistent Stresses Applied Across PD, LGD & EAD
Systematic Credit Cycle Factors Utilised to ‘Bridge’ From Macro Risk Factors to ‘Conditional’ PIT Measures

- View GDP & equity measures as asset-value proxies
- Project macro debt on the basis of trends in asset-value proxies
- Treat Debt/GDP & Debt/Equity as leverage measures
- Derive macro DDs (‘Default-Distance’) as ratios of leverage to historical, leverage volatility
- Convert macro DDs to macro Zs (by normalising mean & variance)
- Use ‘bridging’ relationship to derive industry-region Zs from macro Zs
- Enter industry-region Zs into the PD, LGD, and EAD models and derive stress losses

Macro Scenarios (GDP, Equity)

Macro DD = L/V = f₁ (GDP, Equity)
Macro Z = f₂ (Macro DD)
Industry/Region Z = f₃ (Macro Z)

Conditional Stressed PIT PD = f₄ (Obligor’s internal assessment, Stress Industry/Region Z)
Stress Test Approach Focus is on Portfolio Losses

Macro Stress Scenarios Drive Systematic ‘Conditional’ PIT PD Stresses

- **Stress Case EL** uses ‘Stressed’ PIT PD (1-5 yrs)
 “Reflects stressed credit conditions in the client’s primary Region & Sector”

- **Base Case EL** uses PIT PD (1-5 yrs)
 “Reflects normal credit conditions in the Client’s primary Region & Sector”

Overview of PIT/TTC Ratings Systems

Time

- **Actual**
- **Forecast**

PD

- **Bad Times**
- **Good Times**

Avg Portfolio TTC PD

Macro Scenarios
Components of the US Equity Macro Z

On the right see historical values of leverage and leverage volatility, which has larger proportional swings.

Leverage (inverted) = \(\ln((\text{MtM equity plus debt})/\text{debt}) \).

US equity ‘Macro Z’ tracks North American Corp, EDF-derived Z quite closely.

\(\text{DD} = \frac{\text{Lev}}{\text{Lev-Vol}} \);
\(Z = \text{DD normalized (mean = 0, std dev = 1)} \)

Source: Moody’s KMV, RBS research
Bridging From Macro to Region/Industry Risk Factors

Components of the US GDP Macro Z

On the right see historical values of leverage and leverage volatility, which has larger proportional swings.

Leverage (inverted) = \ln((\text{GDP}/\text{debt})).

DD = \text{Lev}/\text{Lev-vol};

Z = DD normalized (mean = 0, std dev = 1)

Source: …….Moody’s KMV, RBS research
Historical & Forecasted US GDP Growth Rates

Historical GDP < > Forecasted GDP
FSA Anchor III
2008/09 Replication

Historic & Forecasted US Equity S&P 500 Index Growth Rates
Annual growth rates
Historical Equity < > Forecasted Equity
FSA Anchor III
2008/09 Replication

Source: S&P, FSA, US Govt, RBS Research
FSA Anchor Scenario vs ‘Replay of 08/09’ Scenario

US -- ‘Macro-Z’ for GDP & S&P 500 -- History & Scenario Forecasts

Source: S&P, FSA, US Govt, RBS Research
Overview of PIT/TTC Ratings Systems
Summary – Dual PIT vs TTC Ratings

Key Points in the Presentation

- Systematic Credit Cycles are real & they can be empirically measured – their existence motivates Dual PIT/TTC Ratings approaches
- Dual ratings successfully support multiple business objectives
- Legacy credit models vs Dual PIT/TTC ratings – represent a substantial & positive paradigm shift going forward
- Dual PIT/TTC ratings are a ‘framework’ – they can be implemented bank-wide
- Wholesale ratings implementation – E2E models ‘batch mode’ capability using a ‘Model Server’ architecture is a substantial step forward
- Portfolio-wide tress testing capabilities require ‘conditional’ PIT measures – these flow naturally from the PIT/TTC ratings ‘unconditional’ view of risk
This material has been prepared by The Royal Bank of Scotland plc ("RBS"). It has been prepared for information purposes only and should not be reproduced, or disclosed to any other person without the consent of RBS.

Unless otherwise specifically stated, any views, opinions, forecasts, valuations, prices or estimates in this material are those solely of the author and are subject to change without notice. Past performance is not necessarily indicative of future results. Certain transactions, including those involving futures, options and products utilising futures and options give rise to substantial risk and are not suitable for all investors. Each recipient of this material should make its own independent evaluation of the relevance and adequacy of the information contained herein and make such other investigations as it deems necessary, including obtaining independent financial advice, before participating in any transaction. Only investors with sufficient knowledge and experience in financial matters to evaluate the merits and risks should consider an investment in any Security or market discussed herein and persons should not take any action on the basis of this material.

The author of this material confirms that the views expressed herein accurately reflect his/her personal views and further confirms that compensation payable to him/her will not be related directly or indirectly to those views.

United Kingdom. Unless otherwise stated herein, this material is distributed by The Royal Bank of Scotland plc ("RBS") Registered Office: 36 St Andrew Square, Edinburgh EH2 2YB. Company No. 90312.