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Overview 
In a recent paper “A point-in-time–through-the-cycle approach to rating assignment and probability of 
default calibration” (Rubtsov and Petrov, 2016) in this journal, Rubtsov and Petrov (henceforth “R&P”) 
have remarks related to our work on the formulation and estimation of point-in-time (PIT) and through-
the-cycle (TTC) measures of probability of default (PD).  In some cases, we find that R&P describe our 
current work inaccurately and we clarify our approach.  In other cases, we disagree with R&P and we 
present objections.  We focus on the paper’s first half (up to page 98), which is the part related to our 
work.  As a major point, we believe that R&P should consider an alternative to the common practice of 
determining credit grades first, based on a scorecard scores and mappings of scores to grades, and PDs 
second, based on mappings of grades to PDs.  We find it difficult to imagine that the ratings-first approach 
will explain defaults as well as one that determines PDs first and grades second, through the binning of 
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PDs.  Under this latter, ‘direct-PD’ approach, one is free to explain default observations unencumbered by 
a prior grading model. 
 
Detailed Comments 
We define PIT (Point in Time) and TTC (Through the Cycle) PDs (and by extension PIT LGD and EAD) as 
follows (Aguais et al 2004, 2007; Forest et al 2013, 2015; Chawla et al 2015, 2016a, 2016b, 2017): 
 
PIT PD as the unbiased, unconditional expectation of an entity’s default rate over any specific horizon. A 
good unconditional PIT estimate should account for all relevant information including the current state of 
the credit cycle and unconditional outlook for its evolution.   We define the one-year, TTC PD as the 
particular case in which credit conditions today are “normal” and evolving over the coming year as a 
random walk without drift.  

On page 85, R&P state: 

Without getting into a discussion of semantics, in this paper we define PIT and TTC PDs as follows. The 
former is an estimate of the probability of default, within the following one-year (1Y) period, based on the 
current state of the credit cycle. The latter represents the average 1Y probability of default during the full 
cycle, i.e., it is an estimate of the customer’s PD, given the “normal” or long-term equilibrium state of the 
cycle. 

 
We agree with these definitions as far as they go.  But we would refine them by  
 

• clarifying that an institution needs PIT PDs for varying horizons, not only one year, and  
• explaining that the TTC PD represents a way of quoting a long-run “normal” value of default 

distance (DD), which is a measure of instantaneous default risk. 
 
PIT PDs at Varying Horizons.  In pricing for risk, diversifying portfolios, running stress tests, and establishing 
loss allowances, credit institutions need to gauge risk as it is, looking ahead from the moment, and they 
need to evaluate it over the varying tenors of their exposures.  Thus, we use “PD” in referring to the 
likelihood of default over many, identified horizons including one year, two years, five years, three 
months, eighteen months, and so on.  And we include the modifier “PIT” if it’s not already clear that we’re 
referring to the best estimates of prospective risk at a given time.  One may choose to emphasize the one-
year PD as a reference point.  But it’s by no means the only PIT PD that an institution needs. 
 
TTC PD identifies a normal DD.  The Basel IRB formula calls for a TTC PD as an input, but then applies the 
inverse-normal, cumulative-distribution-function (CDF) to it.  That converts the PD into a Probit DD.  For 
that DD to be as required in a stress test, it must describe an entity’s credit status at the moment, 
unaffected by any particularities of the credit-cycle outlook.  The only outlook relevant to Basel RWA is 
the -3.09-sigma, single-factor scenario embedded within the IRB formula.  Thus, if the DD arising from a 
PD is to depict solely an entity’s current credit status, one must remove from the PD any anticipatory 
aspects (i.e. expected drift) and assume that credit conditions over the coming year evolve as a random 
walk (RW).  In that case, the inverse-normal CDF produces the DD as of the moment and the related PD 
would amount to a quoting convention for that DD. 
 
Further the PD/DD must be TTC.  This means that the DDs for a portfolio will, when entered into the 
standard-normal, CDF, produce PDs that reconcile with long-run averages of realized, default rates (DRs).  
We say ‘reconcile’ rather than ‘equal’ to cover circumstances in which a credit portfolio has moved up or 
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down over time in long-run-average, default risk   In this case of a changed, long-run-average, risk profile, 
today’s TTC PDs would reconcile not with the portfolio’s long-run-average default rate (DR), but with that 
DR displaced up or down to reflect the changed risk profile.    
 
As a last, fine point, observe that the TTC DDs in a portfolio with an unchanged, long-run risk profile will 
fall below the long-run averages of past DDs.  The convexity of the Probit PD function within the relevant 
range leads to this result.  The average of past, one-year PDs, reflecting a variety of one-year, credit 
scenarios, will exceed the PD derived (via the Probit function) from the average of DDs.  Thus, to satisfy 
the Basel condition imposed on the RW PDs, the DD inputs will need on balance to be below long-run 
average, DD values.  We refer to the DD values including the convexity adjustment required by the Basel 
condition as “normal values” in distinguishing them from long-run average values. 
 
The magnitude of this effect depends on the amplitude of the cycle and this varies by sector.  Drawing on 
CreditEdge EDFs, we find that, on average, reconciliation with past, average PDs involves setting the Z 
index to a value of about -0.35.  Thus, if we assume that the RW PD at a long-run average value of Z of 0 
is 1.00% and that the sensitivity of DD to a unitary Z change has a typical value of 0.20, then the TTC PD 
including the convexity adjustment would be about 1.21% (= Φ(Φ-1(.01) + 0.20 x 0.35)) or 1.21x the PD at 
a long-run average Z value of 0.  The two parameters in the convexity adjustment formula arise in the 
construction of credit-cycle indices drawing on listed company PDs from a source such as Moody’s 
Analytics, Bloomberg, Kamakura, or the Credit Risk Initiative of the Risk Management Institute at the 
National University of Singapore.  We determine the sensitivity to unit Z changes (0.20 in the example) as 
the standard deviation of annual changes in a sector’s median DDs.  We determine the convexity 
adjustment to the long-run average Z (-0.35 in the example) as the difference between the historical 
average of a sector’s median DDs (= avg

𝑡𝑡
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𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚��) and the DD inferred from the average of a 
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As an aside, observe that the average value of 0.20 (= ρ1/2) for the Z sensitivity of a firm’s DD falls below 
values produced by the Basel correlation formula or inferred from equity returns.  This reduced sensitivity 
is a routine result of calibrating a default model.  More specifically, suppose that, similar to the approach 
taken with the CreditEdge model, one starts with a theoretical default distance, DDtheo, defined as: ln(asset 
value/weighted liabilities)/asset volatility.  Suppose further that, within the default model, one allows that 
DD to be transformed by shift and scale adjustments as follows: DD = a0 + a1 DDtheo.  In calibrating such a 
model using a Probit formulation, one typically gets an estimate for a0 significantly above zero and an 
estimate for a1 significantly below one (about 0.45).  This second result implies that the systematic 
variance of the calibrated DD is only about 20% of that of the theoretical DD.  As with the Black-Scholes 
option formula, the data force one to depart somewhat from the stylized model.  
 
On page 87, R&P include the following comments regarding our approach. 
 

While this method has a more solid basis than the variable scalar approach, it leaves a number of 
unanswered questions as far as we are concerned. In particular, Aguais (2008) provides few details on the 
underlying theoretical model. Further, it remains unclear how we should deal with the potential problem of 
multicollinearity, if the idiosyncratic explanatory variables in the extended PD model happen to be highly 
correlated with Z deviations. Additionally, Aguais says nothing about the distributional characteristics of the 
resulting PIT and TTC measures, which would otherwise be useful in model validations. Nor is the degree of 
PIT-ness formally defined, or its value estimated for an arbitrary hybrid model. Finally, the assumption of 
the existence of a ready-to-go customer-specific hybrid PD (obtained directly from a logistic model) as a 
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starting point for all ensuing PD adjustments and viewing the PD master scale as a mapping from PD to 
rating may be seen as weaknesses of this approach. Indeed, the purpose of ratings is to use them as ordinal 
risk-discrimination buckets into which obligors are placed according to their characteristics. Rating-grade 
PDs are then estimated on the basis of the observed default rates within each bucket. Such a ratings-based 
approach ensures that we correct for any real-life deviations from the nice-to-have theoretical assumptions 
(such as linearity, smoothness, independence, normality, etc) behind whatever PD model a bank might use. 
If the bank obtains customer-specific PDs directly, and has a PD-to- rating master scale, then it must take 
care of the risk of misestimation elsewhere, while ratings become a mere communication convenience. 
 

Some of these remarks reflect disregard to our earlier literature (Aguais et al 2004, 2007) and others 
reflect unfamiliarity with our more recent disclosures (Forest et al 2013, 2015; Chawla et al 2015, 2016a, 
2016b, 2017), one of which was a similar response article to Carlehed and Petrov (2012) article. In other 
cases, we disagree with the remarks. 
 
Underlying theoretical model.  With regard to the theoretical model underlying our approach, we’ve 
revealed a lot on this (Aguais et al 2004, 2007), but we’ll repeat it here.  All of our wholesale-credit models 
start from the Merton framework.  According to that framework, default risk, broadly speaking, arises 
from the interplay of leverage and volatility.  If leverage increases, everything else equal, default risk rises.  
If volatility increases, everything else the same, default risk rises.  If leverage and volatility both increase, 
default risk rises a lot.  Many empirical default models including those that we’ve estimated apply these 
ideas in a variety of ways drawing on a wide range of leverage and volatility indicators.  The Z indices that 
we use in credit applications derive from PDs from listed-company models that embody this Merton view 
of default risk. 
 
Correlation of Z indices with other PD inputs.  With regard to possible correlation between Z indices and 
other explanatory variables in a default model, there is little that one can do about this other than await 
more data.  Explanatory variables properly included in models are often correlated with each other and, 
while this may reduce the precision of the estimates, econometricians advise one to do nothing other 
than seek larger, estimation samples.  In practice, we often find that other variables track the credit cycle 
to some degree and hence exhibit some correlation with the Z indices.  In such cases, the Z indices in the 
model receive a weight below unity.  Most of the time, however, we find that a legacy model tracks the 
cycle poorly and so the correlation of the prior inputs with the Z indices is low and the addition of the Z 
indices with a weight close to one improves default prediction a lot.  In our experience, statistical tests 
routinely reject the hypothesis that the coefficient on the Z index is zero.   However, there still may be a 
substantial margin for error, mainly due to short times series and the infrequency of recessions.  
 
As far as correlation between a systematic risk index and an idiosyncratic indicator, that’s an oxymoron. 
 
Defining PIT-ness:  With regard to ‘PIT-ness,’ we have defined this formally several times in each article 
related to PIT PDs (Aguais et al 2004, 2007; Forest et al 2013, 2015; Chawla et al 2015, 2016b, 2017).  We 
estimate a legacy model’s PIT-ness from the coefficient obtained on the relevant, credit-cycle indices 
when added as inputs to the model.  Thus, if the coefficient is 0.80, we estimate that the legacy model’s 
PIT-ness is 20%. 
 
Previous research (Forest et al 2015 and Chawla et al 2015) provide an explicit, mathematical formulation  
for this conversion process.   Forest et al 2015, page 5, equation 2.1, and Chawla et al 2015, page 8, 
equation 2.1,  present a Probit-model specification repeated in (1) below. 
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 (1) 

   
Previous research provides definitions for all of the variables in (1).  But briefly, DDi,t is the default distance 
imputed from a legacy-model’s grade or PD for the ith entity at time t and DDGAPI(i),R(i),t is the credit-cycle 
index at time t for a combination of the ith entity’s, primary industry and region. Thus, the credit-cycle 
indices distinguish among several, industry-region groupings.  (Note that Z indices, as we define them, 
merely add a variance normalization to the related, DDGAP indices:  Z  = DDGAP/ρ1/2.).  
 
The coefficient bS(i) measures the magnitude of the needed PIT adjustment and so 1 – bS(i) represents the 
PIT-ness of the legacy grades or PDs. Thus, as noted earlier, if the b coefficient has a value of 0.80 and the 
DDGAP index correctly measures the amplitude of the relevant, credit cycle, then, to be fully PIT, the 
legacy model needs an add-on representing 80% of the cycle and the legacy model itself is 20% PIT.  The 
subscript S(i) indicates that this adjustment would in general vary across broad sectors or models.   
 
Forest et al 2015 deals specifically with S&P and Moody’s ratings.  They are mapped to DDs that reflect 
the long-run average DRs of each of the grades.  Further, those grade-to-DD mappings vary depending on 
whether the rating is from S&P or Moody’s and whether the entity is a non-financial corporation or a 
financial institution. While Forest et al 2015 deals specifically with S&P and Moody’s ratings, the legacy 
DDs in the formula could just as well arise from any scorecard model that produces grades and PDs.  
Consequently, in past work, we’ve applied formulas similar to this in converting a variety of legacy, 
PD/grading models to PIT. 
 
PD measurement error.  With regard to the distribution of estimates around true PDs, R&P correctly state 
that we don’t dwell a lot on the margin for error in PD estimation.  That same comment applies to about 
everyone’s work on estimating PDs.  The margin for error in a PD estimate for any, one entity is substantial 
and one can get a partial measure of that from the estimated covariance matrix for model coefficients.  
At a portfolio level, one can get more comprehensive measures by comparing realized with predicted DRs.  
However, the salient questions in choosing and evaluating a PD model include the following:  
 

Which of the available, conceptually plausible models best explains defaults according to the 
conventional metrics? 
 
Do out-of-sample tests reject the null hypothesis that the current model is the true one?   
 

In our applied work, we routinely address those questions. 
 
Cardinal versus ordinal, default-risk indicators.  We disagree with R&P’s proposition that ratings should be 
ordinal indicators and that our emphasis on starting with a numerical default model is a weakness.   
 
Consider the statement that ratings should be ordinal indicators.  We challenge anyone to conduct any of 
the basic tasks of credit-risk management on the basis of indicators of the following form: lowest risk, 
next-to-lowest risk, third-from-lowest, and so on up to next-to-highest, and highest.  Does “lowest risk” 
imply a 1 bp or a 100 bps PD?  Clearly one can’t know based solely on an ordinal ranking and so one can’t 
price for risk or diversify a credit portfolio properly. 
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Of course, R&P later introduce mappings from grades to PDs.  At that point they shift to a numerical, 
default model, likely not the best one.  Yes, in estimating a default model, one must settle on a tractable 
functional form.  One might avoid doing that at least in the same way in starting with a grading model and 
then, as a subsequent step, attaching a grade-to-PD mapping.  However, contrary to R&P’s statement, our 
experience indicates that one almost always predicts defaults better by focusing on modeling defaults, 
unencumbered by the constraint that one must first establish a grade.   
 
We’ve found that traditional grading methods, often involving subjectively determined score-to-grade 
assignments and grade-to-PD mappings, explain defaults less well than directly estimated default models.  
For one thing, human judgement seems a poor device for calibrating a model to explain rare, default 
events.  People attach undue importance to their particular frame of reference and their own, limited 
experience.  Reliance on limited experience adds noise.  Reliance on the particularities of one’s experience 
adds bias.  Specifically, one often finds that the grades in a low-risk portfolio imply less default risk than 
the same grades in a high-risk portfolio.  Further, one often finds that PDs arising from grading models 
with subjective calibrations involve a safety margin, an upward bias that a dispassionate, statistical model 
would avoid.  Last, grading models enforce premature rounding.  As we’ve all learned in science labs and 
we’ve confirmed in statistical trials with default models, one should resist rounding until the last step.  
That’s what we do in mapping from PDs to grades rather than the other way around.  But of course, one 
must accept rounding under some circumstances, because overrides, which are a part of every bank’s 
grading process, occur only through changes to grades.   
 
Later on, pages 88 and 89, R&P add the following description of their approach: 
 

In this paper, we begin by abolishing the above assumption. In particular, we explicitly acknowledge 
the two-step process of obtaining a PD. Namely, we assume that the bank has a scoring function. The 
latter can, for example, be based on a logistic regression and produce 0-to-1 output compatible with 
probabilities, or be an expert based model producing integer scores, etc. Either way, the objective of 
the scoring function is just to order customers from low to high risk. Customers are then graded by 
model-specific ratings, with the latter being defined in terms of scores, not PDs. This is the first step, ie, 
rating assignment. The second is calibration, ie, assigning PD values to each rating grade on the basis 
of the observed within-grade default frequencies. Each customer is then assigned the PD of the rating 
grade awarded in accordance with its score. The focus of our PD adjustments is, therefore, on a rating-
grade PD, not a customer-specific PD. 
 
A consequence of this two-step framework, and our first objective, distinguishing this paper from 
earlier research, is the attainment of TTC rating grades, ie, a mapping from score to rating that takes 
into account the cyclical movements in credit conditions. 3 Additionally, as touched upon in Section 1, 
the two-step process implies that the impact of the business cycle on PDs gets split into two parts, one 
responsible for rating migration, and the other for within-grade ADF variation. The concept of the 
degree of PIT-ness becomes more complex too. In our interpretation, this is a measure of the degree of 
rating migration. Hence, it is a characteristic of the rating grades, pertaining to the assignment step 
rather than to a particular calibration technique. Thus, we propose a new way of defining and 
estimating the degree of PIT-ness of a rating model. 
 

R&P endorse status quo:  R&P’s approach seems to us overly accepting of the status quo.  Banks applying 
legacy methods commonly follow a two-step process of assigning grades on the basis of scorecard scores 
and then, confronted with the need for numerical PDs, appending a grade-to-PD mapping.  And the idea 
that one can partition PIT PDs into a part explained by grades and a second part explained by a floating 
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grade-to-PD mapping is an old one.  It’s intrinsic to the description of many grading models as ‘hybrids,’ 
intermediate to pure PIT or TTC models. 
 
Indeed, we have for years started with two-step, legacy models and added Z indices to them.  We call this 
a grade-to-PD approach.  It involves minimal change to established practices.  One leaves the existing 
processes of assigning grades and thereby PDs as they are and then:  
 

• translates the grade-imputed PDs into DDs by applying the inverse-normal CDF,  
• enters those DDs into a Probit default model, with those DD inputs potentially subject to shift and 

scale adjustments (i.e. DD* = a0 + a1 x DD(grade)),  
• includes the Z indices as additional variables in the model, and  
• calibrates the model to the best-available, default sample.   

 
In our experience in cases with substantial, default samples, one gets statistically significant shift and scale 
adjustments and a statistically significant Z effect.  Thus, through an explicit default calibration, one 
obtains a model superior to the one suggested by R&P.   
 
After that, one can pursue further refinements, starting with the scores or score components or 
underlying, financial and judgmental inputs into a scorecard model and calibrating those more detailed 
inputs directly to defaults.  The size of the default sample determines the extent to which, by unbundling 
a scorecard score, one can produce a superior default model.  Over a period of time with accumulating 
default data, one can imagine moving from a grade-to-PD to a score-to-PD and then to a score-
component-to-PD and finally to a fundamental-indicator-to-PD model.  Of course, at each stage one 
accepts the more elaborate model only if one can reject the hypothesis that it performs no better than 
the prior, simpler one. 
 
In embracing the common, two-step approach, R&P seem willing to accept the status quo without 
considering an alternative.  We instead start with credit grading’s objectives, specifically doing a good job 
in estimating risk-based, breakeven prices and managing the credit portfolio.  We then ask how one might 
best address those objectives.  We find that default and loss modeling answers this question.  The two-
step approach represents one, default-model candidate, but likely not the winning one.  Observe that, 
coming from outside banks and credit-rating agencies, virtually all of the academics contributing to credit-
risk methods focus on default and loss modeling and not on grading.  R&P’s approach, however, seems 
unwilling to challenge legacy methods. 
 
On page 90, R&P present their method for deriving TTC grades. 
 

We start by having a scoring function that produces hybrid scores (not PDs!) for customers in the 
development sample. The scores are then used in rating assignment. As the macroeconomic climate 
changes, the scores will move in a systematic manner, causing rating migrations. One way of achieving our 
TTC goal is to construct “floating” rating grades, i.e, grades whose boundaries will move along the cycle, so 
that an economy-driven change in the customer characteristics, as well as its score, will no longer result in 
a rating switch. 

 
R&P’s portfolio-self-calibration proposal.  To obtain such ratings, R&P suggest mapping scores to ratings 
on the basis of ratings, score boundaries that float in such a way as to correspond to fixed, score quantiles.  
As an example of this, suppose that at the start of a period, entities with scores between the values of 50 
and 60 have a risk grade of 5.  Suppose further that these score boundaries (of 50 and 60) represent the 
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60th and 70th percentile of all scores at that point in time.  If scores rise during the period due to credit-
cycle changes, these same quantiles will correspond to higher score values.  At the end of the period, the 
60th and 70th percentiles might correspond to scores of 55 and 65.  These would be the score boundaries 
for rating 5 at the end of the period. 
 
This way of assigning grades will lead to ratings that over time, under assumed, long-run average cyclical 
conditions, imply unchanging PDs under a couple of conditions.  To start, the portfolio’s composition in 
terms of TTC grades must remain the same over time.  In addition, the scorecard must correctly rank the 
default risk of entities within the portfolio.  Under these circumstances, even if scores move up and down 
broadly with the cycle, one may use scored quantiles in determining ratings that map to fixed, TTC PDs. 
 
R&P emphasize that this result occurs without identifying a PD function.  However, if the scores have no 
demonstrated relationship to PDs, we’d have no reason to use those scores and the related grades in 
credit-risk management.  More likely, R&P have in mind at least a weakly validated, monotonic mapping 
from grades to PDs.  In that case, the score quantiles amount to PD ones and the process is equivalent to 
PD-based assignments.  Once again, one must explicitly consider PDs. 
 
Further, it’s easy to imagine circumstances in which R&P’s approach fails to determine proper, TTC ratings.  
Consider, for instance, the case of an institution that decides to increase (decrease) long-run average, 
default risk in its credit portfolio.  In that case, a score corresponding to a fixed quantile would over time 
represent rising (falling) rather than constant-TTC default risk.  
 
To eliminate this possibility, R&P suggest setting the floating thresholds by chaining together estimates 
reflecting the static portfolio that exists at the start of each period.  But this may not work either.  Consider 
a portfolio that includes only investment-grade entities.  Over a time period, eliminating cycle effects, the 
portfolio’s TTC-risk profile would become more diffuse and some firms might cross into the sub-
investment-grade range.  But if one allows the TTC-score boundaries to float so that each score quantile 
is always assigned to the same grade as at the start of the period, the grades would remain within the 
initial range and the diffusion in TTC risk profile would be missed.  Observe that in this case, we don’t have 
a fixed distribution of ‘true’ TTC PDs, so R&P’s method doesn’t work. 
 
In large dynamic portfolios in which rebalancing produces approximately a constant-TTC risk profile, R&P’s 
approach to assigning TTC grades would work reasonably well.  Dynamic portfolios more so than static 
ones tend to be stable in terms of TTC risk.  This explains our use of large, dynamic, presumably TTC-
neutral portfolios in deriving credit-cycle indices.   However, in illustrating their proposed method of 
defining TTC grades, R&P examine static-portfolio changes.  
 
Decomposing changes:  On pages 90-93, R&P decompose variations over time in a portfolio’s DR into 
components related, respectively, to 
 

• migrations in grades, with each grade’s DR assumed fixed,  
• variations in DRs within grades, with the grade composition of the portfolio assumed fixed, and  
• survivorship bias, meaning that defaults within a static portfolio cull the weaker credits. 
 

They exclude effects of new entrants in the measurement of each, one-period change. They perform the 
decomposition with ratings grades represented alternatively by fixed and floating, score boundaries, with 
the boundaries in the second case corresponding to fixed, score percentiles. 
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Not surprising, when the ratings boundaries float, according to a rule designed to keep the ratings 
composition constant, variations in DRs within grades end up explaining almost all changes in the portfolio 
DR.  But that merely demonstrates that, in large portfolios, systematic risk (i.e. the credit cycle) accounts 
for almost all of the DR variations.  Idiosyncratic variations offset. 
 
Oddly, R&P label the variations in PDs within grades a TTC part of the DR change, even though it reflects 
cyclical changes rather than DR changes that occur with the credit-cycle fixed at a long-run average 
setting.  We suggest that R&P drop the TTC and PIT labels attached to the different components of the 
decomposition.  Instead, R&P may simply refer to the three components as DR variations attributable to 
(1) grade migrations; (2) changes in DRs within grades; and (3) survivorship bias. 
  
Further clarification of our approach.  In response to questions raised in a review of an earlier draft of 
these comments, we provide answers below further clarifying our approach. 
 
(1) How do you convert a partly PIT PD to TTC?  We convert the partly PIT PD to TTC by removing part and 

not all of the current, DDGAP from the DD inferred from the PD.  In the case of a partly PIT, legacy PD, 
the b coefficient in the formula (1) is above zero and less than one.  Here we convert to TTC as follows:  
DDTTC = DDLegacy – (1 – b) x DDGAP.  Thus, if the legacy DD’s PIT-ness is (1 - b), we must remove (1 - b) 
x DDGAP from it in converting to TTC. 

 
(2) How do you verify that the model that results from adding the credit-cycle index to a legacy model is 

truly PIT?  We verify the PIT-ness of a PD model by comparing the times series of average PDs that it 
produces with the time series of realized DRs.  We routinely accomplish this by plotting the modelled 
PDs together with the realized DRs.  The modelled, average PDs need to track the realized DRs closely 
with materially the same, cyclical amplitude.  Only in that case would we view the model including 
the credit-cycle indices as PIT. As a further test, in this case of discriminatory performance, we 
routinely bin observations by the modelled PDs and compare average PDs with realized DRs in each 
of the bins.  In this case, we look for that the scatter plot of average PDs and realized DRs to be tightly 
clustered around the diagonal line. Only in that case, do we view the model as discriminating well. 

 
(3) How do you ensure that in estimating a model specified as in (1) above that 0 < b < 1?  We generally 

impose this condition as a constraint in the estimation.  However, in rare circumstances, we may 
suspect that the DDGAP index understates the true cycle.  In such a case, we would merely constrain 
b to be positive and allow b > 1.  Alternatively, we might apply a scalar in amplifying the measured 
cycle.  

 
(4) How do you distinguish between lack of PIT-ness and effects of data lags?  We haven’t focused on this 

other than advising modelers to try to mitigate lags in financial data by projecting financials, starting 
with the ‘no-change from most recently reported’ model and progressing beyond that only upon 
obtaining evidence of statistically superior performance with a more elaborate method.  However, in 
our experience, the delays in receiving financial data account for little of a legacy model’s lack of PIT-
ness.  Mainly, we find that the lack of PIT-ness traces to the undue stability of model inputs and this 
isn’t fixed by shifting the timing of financial data.  The market-value and market-volatility information 
provide the cyclical volatility that the other inputs lack.   
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(5) How do you address regulatory requirements for adding regulatory margins of conservatism (MOCs) 
to model estimates?  In the past, we’ve added shift parameters to low-default-portfolio, PD models.  
We’ve determined the values of those parameters so that they raise the sample average PD by an 
amount implied by the assumption that the realized DR was at the 40th percentile point within the 
default-rate CDF.   

 
We now believe that one should address regulatory conservatism at the broad portfolio level rather 
than model by model.  If loss estimates on broad portfolios over several years exceed realized losses 
by less than a MOC determined on statistical grounds, we’d apply a scalar that increases the loss 
estimates by enough to reach the threshold.  But, in light of the large, upward biases in today’s Basel 
models, we don’t view this as a major concern.  Instead, in our current work on determining loss 
allowances under IFRS 9 or CECL, the salient question concerns the appropriate downward 
adjustments to make.  Some further clarification follows.   

 
An aggregate approach to evaluating MOCs seems warranted both by the need to reduce sampling 
variation in measures of estimation error and by its alignment with the capital-standard’s purpose, 
which is to protect the solvency of the institution as a whole.  A model-by-model approach, in contrast, 
tends to produce perverse outcomes in which risk managers that strive for highly detailed, risk 
quantification are disadvantaged relative to their less meticulous peers.  The asymmetries in MOCs 
lead to this result. 
  
More importantly, today’s Basel models are producing wholesale-credit, loss estimates that are 
biased upwards by 60% or more, according to studies of Pillar 3 reports.  Thus, the regulators would 
be well advised to shift emphasis from MOCs to accuracy.  A heighted emphasis on accuracy would 
surely reduce the large, unexplained disparities in risk weights across institutions.  Such disparities 
can’t persist if models become accurate. 
 

(6) Are direct-PD models compliant with the Basel standards, which describe PDs as arising from grades?  
In our experience, yes. We’ve had direct-PD models approved for use under Basel II at two banks.  
Also, we believe that the Basel standards were written to illustrate a common practice, not to require 
adherence to that practice. 

 
In any case, our comments relate to the proper conduct of risk management.  If the regulators were 
to prescribe the use of particular techniques, those would indeed be required for Basel RWA.  
Nonetheless, in its conduct of risk management, we’d advise the bank to use the best available 
approach, even if this differs somewhat from a prescribed, regulatory formulation.  Does bank 
management wants to inform shareholders that it’s managing risk in an inferior way? 
 

(7) How might a bank convince regulators that the direct-PD approach is appropriate? We do this by 
making the case that we’ve considered all, conceptually sound approaches available to the institution 
and have selected the one that performs best according to the conventional metrics.  The choice of 
models is always a comparative one – null of legacy versus alternative hypothesis of a proposed new, 
typically more elaborate model.  We choose the latter only if one can reject the hypotheses that the 
greater elaboration adds no value.  In our experience in conducting such comparative assessments, 
we often reject grade-to-PD models in comparison with direct-PD ones.  Yes, internal model-validation 
units and the regulators will challenge models including direct-PD ones and we address those 
challenges as best as possible.  But, in the end, the choice is unavoidably a relative one, so despite the 
presence of imperfections, we chose the conceptual plausible model that performs best 
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(8) How do you deal with MLE estimation in the presence of default correlation?  We always include the 

current period, risk-factor value as an input into the estimation.  This is possible, since estimation is 
retrospective.  Assuming that that factor accounts for all correlation, the individual observations 
become conditionally independent.  This may not be entirely true, but this represents our best effort 
to deal with the problem. 

 
(9) Can you substantiate the claim that a direct-PD model explains default better than an approach that 

determines grades prior to PDs?  The presumption that a direct-PD approach would perform better 
seems to us clear in logic.  A model that optimizes the fit to defaults will in most cases explain defaults 
better than a model that explains defaults in some other, indirect way, particularly approaches relying 
on human judgment as a substitute for calibration.  We can’t disclose the results obtained when 
working for two banks.  Those results, which justified the replacement of many, grade-to-PD models 
by direct-PD ones, is proprietary to those institutions. 

 

We’re aware of the argument sometimes made by S&P and Moody’s that, by accounting for nuances 
in individual cases, a highly judgmental approach will perform better than a model.  But our 
experience in cases in which the default samples allow one to test this is to the contrary.  For one 
thing, most PD models include structured judgments as either scored or categorical inputs.  Further, 
beyond those structured judgments, which we’ve found useful particularly in countering the lags in 
financial data, we’re unsure whether the exercise of judgment really improves default prediction. 

 
(10)  What justifies your claim that models that assign grades prior to PDs are inherently subjective?   By 

that claim we mean that defaults events represent the only objective (or close to objective) evidence 
on default risk.  Thus, if grades don’t derive from PDs, they must involve judgmental rather than 
factual assessments of default risk. 

 
Summary 
We find some of R&P’s remarks on our methods inaccurate and our above comments seek to remedy 
those inaccuracies.  In particular, we make it clear that our approach is based on the Merton framework 
in which default risk reflects the combined effects of leverage and volatility.  We’ve also presented a 
mathematical formulation of our method for converting legacy grading/PD models to PIT and for 
determining the PIT-ness of those legacy models.  R&P find that the floating DRs of ratings defined as 
score ranges representing fixed, score percentiles, explain most all the time series variation in large 
portfolio DRs.  We point out that, so long as the underlying scores rank default risk well, the result is 
unsurprising.  The floating DRs of the floating score bins would identify almost all of the systematic 
variation in default risk and the remainder, tracing to migrations with respect to floating score bins, would 
be unsystematic.  As a last comment, we believe that R&P should consider moving away from the 
commonplace framework of determining credit grades first, based on scorecard scores and score-to-grade 
mappings, and PDs second, based on grade-to-PD mappings.  We find it hard to imagine that such an 
approach will explain defaults as well as one that determines PDs first and grades second, through binning 
of PDs.  In our work, we generally find that this latter, ‘direct-PD’ approach explains defaults better than 
the common grade-first method. 
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