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Executive Summary 
 

Introduction: Continued rises in global average temperatures together with the recent 

occurrence of extreme weather, fire, and drought events have heightened concerns over the 

possibility that climate change will have dire effects on future environmental and economic 

wellbeing. In response, financial regulators have formed the NGFS consortium, which creates 

scenarios to apply in climate risk stress testing (‘CRST’). As now designed, the NGFS 

scenarios describe gradually evolving changes in economic and financial conditions under a 

variety of climate paths. But for depicting credit-risk stresses, one needs scenarios that 

depict sharp and unexpected deviations in cash flows, asset values, and volatilities from the 

trends produced by gradual changes. One commonly refers to such abrupt, deviation-from-

trend events as ‘shocks.’  But how might one introduce such credit shocks into a climate-

scenario model? We offer an answer to this question. 

This paper presents a business-credit-risk model that, builds on our extensive empirical 

credit risk modelling research, by adding the systematic component of unexpected credit 

shocks to climate scenarios. The model also allows for firm-level credit/climate trend 

effects on business PDs. One sees such firm-level effects depicted in recent studies including 

a couple from the ECB (2021, 2023). However, demand/supply analysis suggests that those 

trend effects could be both detrimental and beneficial and average close to zero. However, 

the relative impacts on high vs low-climate risk firms could be quite large. In contrast, the 

broader volatility rises postulated here due to long-run climate effects generally increases 

credit risk overall.  

The main research question therefore focuses on ways to develop CRST scenarios that fully 

reflect the complexity of credit risk and which provide multiple channels for future climate 

change to influence credit risk portfolios. 

Methods and Approach: In this paper we present an approach for developing CRST 

scenarios that combines firm-level climate physical- and transition-risk sensitivities with a 

multi credit factor model calibrated to market-based credit-cycle factors (‘Z’) derived from 

listed company PIT PDs (EDFs). In projecting the stochastic evolution of the credit-cycle 

factor for each selected industry or region, we apply our well-known Z second-order 

autoregressive (AR2) model calibrated to the historical time series of factor values. Focusing 

just on credit risk, the inclusion of the credit-cycle factors as inputs in the PD models for 

firms and the LGD and EAD models for facilities, produce the related PIT PD, LGD, EAD, and 

credit loss scenarios. PIT credit models provide key credit risk measures that along with TTC 

credit models as part of Dual Ratings systems that support multiple risk and regulatory 

objectives in banks. PIT credit measures are more accurate in that they reflect the systematic 

part of unexpected credit risk shocks that can be empirically measured – applying PIT credit 

measures is key for CRST scenarios. 
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To add prospective effects of climate change on credit-risk factors and thereby defaults and 

credit losses, we assume that the volatilities of the credit-factor innovations rise together 

with a specified climate-change metric (currently, global mean temperature: GMT). In our 

current approach, we start by projecting the rise in the volatility of innovations in the overall 

average credit-factor and then distribute that average result to industries, regions, (or firms) 

by applying beta coefficients based on emissions and location data. Since we have not yet 

acquired data on company-level emissions and locations, our illustrations to date use 

industry and region betas based on rough general estimates of the carbon intensities of 

industries. These preliminary illustrations do not include for now differences in firm-level 

climate exposures within sectors, in effect assuming that companies within each industry or 

region have the same exposures.     

To model climate trend effects on an individual firm’s TTC PDs, we assume that those PDs 

will trend up or down as indicated by a climate-change-sensitive model for each firm. Such 

models, in many cases, indicate that firms with high exposures to climate-change cost 

increases will have upward trending PDs and those with low exposures downward trending 

ones.  

Further, note that we start with the same observed initial credit conditions in all climate 

scenarios. In effect, this means that we assume that the different scenarios involve only 

changes to future volatilities and possibly TTC PD trends and no change in current asset 

values and MtM leverage. In future work, we may relax this assumption and try to anticipate 

the changes in current asset values implied by a sudden change in market expectations 

regarding future climate-risk trends. 

To date, our focus in developing the integrated CRST approach we present has been on 

specifying the modeling details – by integrated we mean firm-level and dedicated industry 

sector and regional credit factors are combined in a single framework. This paper following 

our other credit/climate papers completes the specification of the integrated approach. So 

far, we have also focused only limited effort on calibrating the effects of climate change 

either on trends or volatilities of credit-risk factors, therefore the scenario analysis presented 

here is to demonstrate how the approach works. As we pointed out in Aguais and Forest 

(2023, a) the correlation between rising GMT trends and the volatility of our credit factors is 

not yet statistically observable, suggesting formal model calibration will be an ongoing 

research effort. Thus, in the illustrative scenario and credit loss projections we present, we 

rely on assumed relationships, not empirically derived ones – however, the Z credit factors 

are fully derived empirically.  

Contributions: In Aguais and Forest (2023, b) we were the first to contribute an approach for 

applying rising credit factor volatilities related to climate change. For firm-level climate 

sensitivities, applying emissions and location data, one finds the primary approach outlined 

in recent ECB studies and other research. Building on NGFS scenarios, the proposed 

framework presented here is the first to combine foundational credit-factor models with 

firm-level credit/climate models to assess climate-change effects on credit risk through 

multiple channels. The integration of firm-level climate effects in the approach is also 
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modelled as credit/climate trend effects through application of the concept of ‘TTC Drift’ 

which has also not been developed before in the literature. 

By full credit risk models, we mean models that combine firm-specific credit risk effects with 

systematic credit factors representing unexpected shocks. The proposed integrated 

credit/climate approach builds on Aguais and Forest (2023, a, b, c, d, e and f) and the 

author’s long-time credit modelling work (Forest and Aguais (2019, a, b and c), Chawla, 

Forest and Aguais (2015, 2016, a, b), and, Belkin, Suchower and Forest (1998, a, b) focused 

on building wholesale credit models for use in determining Basel capital, estimating ECLs for 

provisioning (IFRS9), and running stress tests.  

Applying the Integrated Credit/Climate Scenario Framework: The integrated approach we 

present here is designed to directly incorporate the kinds of firm-level credit/climate models 

banks are currently working on, therefore, the approach is fully flexible. The Z-Risk Engine 

solution provides the credit factor models that could be combined with a bank’s firm-level 

credit/climate models. We demonstrate a flexible scenario approach for developing two 

different CRST scenario use cases. 

The first scenario use case develops stochastic scenarios over any time horizon by quarter 

for the credit factors and includes both firm-level credit/climate effects and rising climate-

related volatility. The second scenario use case also includes firm-level credit/climate effects 

but applies deterministic credit/climate shocks as ‘add factors’ to Z industry sectors and 

regions to develop short-run climate scenarios as in Aguais and Forest (2023, e). 

The key next tasks in our CRST modelling effort will focus on model calibration of the 

integrated approach we outline in the paper. We propose an approach for calibrating 

physical (‘P’) and transition (‘T’) climate factors to CreditEdge EDF credit measures.  

To develop the various credit/climate scenarios presented here we use the Z-Risk Engine 
(ZRE) credit-factor solution, with the Z industry and region factors estimated from EDFs for 
1990-2023 as second-order AR processes. To develop credit/climate scenarios to 
demonstrate the framework, absent a full model calibration, we use two key climate 
assumptions as follows: 
 

(1) We apply the illustrative volatility multiplier approach using NGFS projections for 
each scenario’s future GMT path, and,  

(2) We apply a set of general industry and region sector beta assumptions that capture 
differential carbon intensity sector effects as proxies for a firm-level climate-
sensitive PD model. 
 

Using these key assumptions and the proposed approach we apply the framework to a 
roughly £140 billion UK/European credit portfolio to assess credit/climate scenario effects 
on various credit measures. 
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1.0. Integrated Climate Risk Stress Testing 

 

1.1.  Overview 

 
In this section we summarize some key advances in the methods that analysts apply in 

developing scenarios depicting socio-economic, economic, and environmental trend impacts 

on financial risk measures in relation to climate change. This scenario analysis involves the 

complications of having to: 

• consider the consequences of global warming trends that extend outside the range of 

documented experience, 

• foresee, based on incomplete science, the effects of global warming on such things as 

extreme weather, melting of large ice masses, and ocean currents,  

• anticipate the availability, effectiveness, and cost of future technologies for arresting 

climate change or adapting to it,  

• consider future uncertainty in complex climate mitigation policy, and, 

• link these broader ‘climate drivers’ to measures of credit risk. 

 

Despite these complications, scenario analysis stands out as the most common technique 

used in evaluating effects of climate change. Thus, we review how CRST methods in the 

literature have been developed to support the management of climate-change impacts on 

financial risks and we highlight important concerns raised about the current methods. We 

then review ways in which CRST scenarios are applied in evaluating climate-change effects on 

wholesale credit portfolios. 

We find that current CRST scenario approaches for credit risk do not apply fully specified, 

foundational credit models that would include both firm-specific and industry/region 

systematic unexpected ‘shock’ effects. 

 

1.2.  Climate Change 
 
‘Life on planet Earth is under siege …. [with] minimal progress made by humanity in 
combating climate change.’ This statement appears at the beginning of ‘2023 state of the 
climate report: Entering uncharted territory.’1 The report is one of many responding to the 
recently observed ‘all-time climate related records and deeply concerning patterns of 
climate-related disasters.’2 Continued increases in global CO2 emissions and related rises in 
global mean temperatures (‘GMT’) suggest that environmental damage will continue to get 
more severe.  
 
  

 
1 See, Ripple, et al. (2023), page 1. 
2 Ibid., page 1. 
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Assessing the impact of climate change is an extremely complex task that many have 
suggested is dominated by ‘radical uncertainty.’3 Climate impacts have only been observed 
recently, but involve all interdependent aspects of the physical environment, global society, 
economic activity, and the financial system. The use of carbon-based energy is fully 
embedded E2E across nearly all social and economic activity implying a longer-run transition 
away from a carbon-based economy will require substantial economic structural changes.4 
 
Climate research in recent years has developed a primarily top-down, deterministic scenario 
framework to characterize multiple future scenarios for Earth’s physical climate, society, 
and global economic activity.5 In the early application of climate scenarios, the focus has 
been to assess various climate policies and trade-offs including long-run physical climate 
risks by:   
 

• creating several scenarios describing potential future paths for climate, socio-
economic and economic variables, and, 

• applying those scenarios in evaluating the economic damages from climate change 
and the costs and benefits of possible mitigation policies. 

   
Integrated Assessment Models (‘IAMs’) stand central to much of this analysis. IAMs draw on 
several disciplines and often include models depicting the macro economy, energy 
production and use, CO2 and other green-house-gas emissions, regional climates, land use, 
demographics, and so on.6 
 
‘What-if’ scenarios derived using IAM frameworks seek to anticipate a range of possible 
climate and economic futures as opposed to seeking to predict the most likely future 
outcome, and these scenario approaches often foresee a range of possible outcomes as 
opposed to just the most likely one.7  Kemp et al. (2022) suggest that ‘Prudent risk 
management requires consideration of bad-to-worst-case scenarios. Yet, for climate change, 
such potential futures are poorly understood. Could anthropogenic climate change result in 
worldwide societal collapse or even eventual human extinction?’8  
 
In contrast to climate projections verging on catastrophic, for example see, Wallace-Wells 
(2019), more moderate scenarios assuming successful application of a variety of mitigation 
polices could potentially lead to less severe outcomes. Given the limitations in our 
understanding of the relationship between global warming and extreme weather and the 
shortcomings in our ability to foresee the effectiveness of actions taken to address the 
challenges posed by rising temperatures, climate scenarios need to span a wide range of 
possible futures. As Dembo and Latif suggest (2023), ‘The uncertainty of climate change is 

 
3 For a discussion of radical uncertainty and climate change see, Chenet, Ryan-Collins and Lerven (2021). 
4 For a discussion of climate and economic structural change see, Ciali and Savona (2019). 
5 Deterministic scenarios generally exclude complexity, see, Cliffe (2023), who highlights the broader 
complexity driving climate change, suggesting the world is characterized by, ‘VUCA – Volatility Uncertainty 
Complexity Ambiguity’. On ‘VUCA’ and systematic climate risk impacts, see also, Kiesel and Stahl (2022). 
6 See Nordhaus (2013) and Asefi-Najafabady et al. (2021) for discussions related to IAM modeling.  
7 See, O’Neill et al. (2020) for a related discussion. 
8 See, Kemp et al. (2022), page 1. 
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such that no single scenario can adequately capture how a changing climate can shape the 
future’. 9 
 
In practical terms, uncertain climate change means that the future impact of climate stress 
could cover a very broad spectrum of consequences. Dembo characterises climate risk 
assessment as requiring a wide range of possible scenarios, referred to as a 'scenario 
spanning set.’10 Consistent with these concerns, a fair amount of criticism has been 
discussed in the literature, due to the fact, that current climate scenarios do not seem to 
include more extreme downside scenarios. Based on the deterministic, trend-oriented style 
scenario approach in IAM-based, NGFS scenarios, many question whether these scenarios 
represent a reasonable scenario ‘risk spanning set.’  For climate scenarios, the fundamental 
questions that remain outstanding are, (1) do climate scenarios cover a reasonable 
‘spanning set’ (range of scenarios), and (2) ‘how bad is bad’ which is an issue broadly of 
model calibration. 
 
This paper focuses more narrowly on climate stress impacts on credit risk, therefore the 
answer to these key questions is part of what we seek to analyse with the proposed, 
integrated CRST approach. By building climate scenarios on top of fully specified credit 
models that include past systematic shocks, the proposed approach is a big step in the right 
direction for quantifying uncertain credit/climate effects in some degree of measurable 
terms, dependent upon model calibration. 
 
 

1.3.  Physical and Transition Climate Risks 

 

The global effort to manage the impact of climate change on financial stability has focused 
on assessing two potential source of climate risks - physical risk could result from 
increasingly severe weather volatility, coupled with physical ‘tipping points.’  Observed GMT 
levels are rising and looking forward,  Lenton et al. (2020), point out that “five major tipping 
points are already at risk of being crossed due to warming right now and three more are 
threatened in the 2030s as the world exceeds 1.5C global warming.” 11 
 
To highlight one specific example of a potentially large, complex, interdependent climate 
shock, climate-driven population migration related to rising physical climate risks could have 
profound social and economic impacts. In 2022, by one estimate there were 36.2 million 
‘climate refugees’, who were displaced by natural disasters due to climate change.12  One 
estimate suggests that by 2070, up to ‘1- 3 billion people are projected to be left outside the 
climate conditions that have served humanity well over the past 6,000 years.’ 13 Assuming 
the average estimate of 2 billion, that would be a roughly 55-fold increase over 2022! Rising 
physical climate shocks leading to, substantial population migration away from potentially 
uninhabitable parts of the Earth could lead to huge political, social, and economic upheaval, 
highlighting the extreme interdependence across climate complexity.  

 
9 See, Dembo, and Latif (2023), page 6. 
10 See, Dembo, (2019). 
11 See, University of Exeter (2023) and Lenton, et al, (2023). 
12 See, Apap and Harju (2023), page 1. 
13 See, Xu (2020). 
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Coupled with physical risks, climate related transition risks could result from abrupt carbon-
related policy changes and complex, uneven structural change in economic activity and 
markets and it has been suggested these transition risks could lead to potentially disruptive 
carbon stranding shocks.14 The Bank of England (‘BoE’) has suggested, ‘Transition risks can 
occur when moving towards a less polluting, greener economy. Such transitions could mean 
that some sectors of the economy face big shifts in asset values or higher costs of doing 
business. ‘It’s not that policies stemming from deals like the Paris Climate Agreement are 
bad for our economy – in fact, the risk of delaying action altogether would be far worse. 
Rather, it is about the speed of transition to a greener economy – and how this affects 
certain sectors and financial stability.’ 15 
 

1.4.  Climate Risk Stress Testing 

 

To assess climate change and financial stability in the banking system, CRST has become a 
key focus of financial regulators, policy makers and economists. Following Reinders (2023) 
we characterise CRST as focused on developing a framework for assessing the ‘vulnerability 
of a portfolio, a financial institution or the entire financial system to adverse climate related 
hazards and scenarios to physical and transition risk.’ 16  Developing a coherent CRST 
approach is a complex task and, as Cormack and Shrimali (2023) highlight; ‘climate risk 
modelling in financial institutions is a relatively new, [novel] field, and it is evident that 
several challenges in the quantification of these risks need to be addressed  – as a 
consequence, methodologies that are [currently] employed are in many cases incomplete 
and misleading’. 17  
 
CRST scenarios developed for the financial system apply deterministic ‘trend-style, top-
down’ climate and economic projections from NGFS scenarios based primarily on IAMs. 18 
The NGFS scenarios assess physical risks through projections of climate variables (GHG 
concentrations), GMT impacts and broad projections of weather patterns and rising sea 
levels. Transition risks are analysed by assessing the impacts of carbon mitigation policies 
(carbon taxes and green subsidies) on various financial measures. The general deterministic, 
‘what if’ approach applied in CRST scenarios is not new, as it has its roots in traditional, 
short-run stress testing. Financial regulators currently require banks to apply a short-run, 

 
14 For a discussion of the Impact of potential carbon stranding shocks in the global oil and gas sector, see 
Semieniuk et al. (2022). 
15 See, Bank of England, (2019). 
16 See, Reinders et al. (2023) page 6. 
17 See Cormack and Shrimali (2023), page 1. 
18 See Allen et al. (2022, 2023), Vermeulen et al., (2020), and Boirard et al. (2022) for key papers discussing the 
application of various top-down CRST scenarios. 
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‘what-if scenario approach to derive conditional estimates [of extreme risk] under a given 
hypothesis.’ 19 20 21  
 
In applying scenario analysis to climate change, Baer et al. (2023), provide a detailed review 
suggesting that ‘all [climate] scenarios are wrong’ but scenario analysis as a framework can 
be useful if the inherent limitations are clearly understood. A key contribution, of their 
paper and their ongoing research focuses on developing a broader taxonomy framework for 
how banks and financial regulators can develop and apply CRST scenarios to support a range 
business, financial, risk, and regulatory use cases. 22 
 
The distinction between current bank capital stress tests and evolving CRST scenario 
approaches is important for at least two reasons. First, short-run bank credit stress tests can 
be calibrated to past observed economic shocks that produce large cyclical increases in 
portfolio credit losses. CRST in contrast is quite different due to the lack of observed climate 
impacts on credit risk historically, suggesting  CRST scenarios can’t be calibrated to historical 
data. Compared to traditional bank stress testing, CRST also creates substantial modelling 
challenges due to global complexity. The ‘overarching challenge of climate scenario analysis 
[is] to balance the ‘applicability of scenarios with the required representation of 
complexities needed by the financial sector in the face of unprecedented risk, urgency of 
the transition and planetary boundaries.’ 23  
 
Secondly, from an implementation point of view, regulators also seem to be moving toward 
some degree of integration of CRST with capital stress test policies and procedures required 
for banks. Based upon recent regulatory publications and industry discussions, it seems 
probable that the overall regulatory objective is to unify traditional stress testing and CRST 
from a policy and procedures point of view. If this is the overall objective, this also suggests 
assessing climate impacts using CRST scenarios could directly impact the regulatory capital 
banks are required to hold. 24 25 
 
Given these key drivers complicating climate change scenario development, it is not 

surprising a substantial debate has developed within the industry and the CRST literature. 

Baer et al. point out, ‘it is important to recognise that current IPCC and IAM-based scenarios  

were fundamentally not built for financial scenario analysis; they were built to inform policy. 

 
19 See, Baer et al. (2023), page 2. 
20 In short-run bank capital stress tests, the application of ‘what-if’ scenarios are common. Regulators in most 
jurisdictions follow this general scenario approach by providing banks with short-run projections for key 
macro-economic and financial or market-based variables that banks then apply to their own credit portfolios 
to project ‘stress credit losses’.  The ‘what if’ approach for bank capital stress tests is well developed and 
riskier scenarios such as the US FRB CCAR ‘severely adverse’ stress scenario are benchmarked to past 
economic and financial shocks.  The current 2023 CCAR ‘severely adverse’ stress scenario looks broadly like the 
2007/08 ‘great recession’.  
21 A recent discussion of traditional stress tests vs CRST can be found in Cartellier (2022). 
22 Baer et al. have a forthcoming CGFI Discussion Paper that is tentatively titled, ‘A scenario taxonomy for the 
financial sector.’ 
23 See Baer, et al. (2023). 
24 The potential integration of climate scenarios with bank capital rules is a complex topic and part of an 
ongoing industry debate. For a perspective supporting integration of climate with bank capital rules see, 
Gelzinis (2021) and for the argument against, see, Anderson and Covas (2021). 
25 See Reinders, et al. (2023) page 6.  
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They were designed to explore the implications of different policy decisions, not to stress 

test.’ 26  Climate impacts are not well understood in general and the highly complex 

dependencies with the real and financial sectors means that the impact of climate change ‘is 

characterized by deep uncertainties and complex non-linear effects that materialise over an 

extended period of time.’ 27 Baer et al. state that IPCC and IAM-based scenarios were 

created to inform policy and are not well designed for characterizing climate-related 

financial risk as noted above. 

Cormack and Shrimali (2023) point out that there is a lack of transparency and consistency 

in the climate-stress test methods applied by banks. Cliffe (2023) opines that existing 

climate narratives and models downplay many key risks associated with climate change. T. 

Philipponnat (2023) suggests that current DSGM and IAM models produce excessively 

smooth and stable projections that ignore discontinuities that may happen under climate 

change. Reinders et al. (2023) and Bolton (2020) make similar remarks. 

 

1.5.  CRST Scenarios Applied to Wholesale Bank Credit Risks 

 
To extend the NGFS scenario approach more directly to financial measures of credit risk, 

various country regulators have been leading this effort along with the ECB who has 

proposed a ‘bottom-up’ climate risk methodology linking top-down NGFS climate scenarios 

to firm-level financial risk impacts, see, ECB, (2021, 2023).28 In Aguais and Forest (2023, g), 

we provided a review of the implied climate-sensitivity PD impacts from the two key 2021 

and 2023 ECB CRST papers, showing they were substantially different.29 Assessing firm-level 

credit risk impacts for climate change due to physical and transition risks in the ECB effort, 

‘trace climate-change’s effects on companies to rising costs caused by greater physical 

damage, more stranded carbon assets and higher carbon taxes.’ 30 The ECB approach of 

combining top-down NGFS scenarios with firm-level credit impacts through ‘climate-

sensitive credit models’ is also evolving to a certain extent in Europe toward a de facto 

regulatory standard for CRST in banks.  

  

 
26 Baer, et al. (2023), page 2 – bolding added by the authors for emphasis. 
27 See Reinders, et al. (2023) page 6. 
28 For the ECB, see, Algoskoufis, et al. (2021), and Emambakhsh, et al., (2023). We will generally refer to the 
Algoskoufis paper as ‘ECB 2021’ and Emambakhsh as ‘ECB 2023’. Additional papers discussing climate change 
and credit risk can be found in Wambui (2023) and Novella (2022). Hangelbroek (2022) also presents an 
approach for undertaking climate-adjustments to European corporate PDs that is similar to the ECB approach. 
Baldassarri et al. (2020) also assess future firm-level climate related credit effects. 
29 In ECB (2021) the assessment of climate/credit effects assessed both physical and transition risks to 2050. In 
ECB (2023) the assessment looked at a time horizon to 2030 and included only transition risks. Applying only 
transition risk in the 2023 ECB paper over a shorter time horizon to 2030 would generally suggest smaller 
credit effects on wholesale PDs relative to 2021. The general explanation for higher not lower credit impacts 
cet. par. derives from the ECB applying conservative cost passthrough and green financing assumptions and 
also using a revised PD model calibration in the 2023 paper. 
30 See, Aguais and Forest (2023, b) page 2. 
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Current climate scenarios, as many have suggested, have a hard time representing the 

impact of climate uncertainty and complexity, in addition to also not capturing larger 

systematic credit cycles. This problem stems generally from the application of smooth 

changes in economic trends as, ‘in these climate scenarios as currently applied, climate 

change slows economic growth, but does not affect cyclical variability in the factors 

influencing credit risk.’31 

Absent climate effects, wholesale credit risk models are driven by two risk effects, firm-

specific credit risk shocks (idiosyncratic) and occasional, large, unexpected systematic 

shocks impacting many firms simultaneously. These credit shock effects on observed credit 

losses have been well observed over the last roughly 40 years. Peak credit losses during the 

Great Recession reached about 3X long-run average credit losses on C&I loans as measured 

by the FRB C&I Loan Loss Index, as we see in Figure 1. Overall, we see that systematic shocks 

account for a substantial portion of observed wholesale credit losses.  

 

Figure 1:  Annualized Charge-Off Rates of US Bank Commercial and Industrial Loans 

Source: Federal Reserve Board 

Credit models that consider only gradual changes in economic and financial variables 

perform comparatively poorly in explaining past credit losses. Large and abrupt, unexpected 

changes in economic and financial conditions account for much of past credit losses, 

especially those occurring during occasional periods of severe stress (Figure 1). Figure 2 for 

1990-2023 shows our Z-Risk Engine credit cycles for the Technology and Oil/Gas sectors, 

derived from our Z credit factor models estimated from Moody’s CreditEdge EDFs.32 We also 

see that the credit cycles in different industries and regions mostly move together, but at 

times can differ substantially (Figure 2). Our Z credit factors are defined as first differences 

and modelled as second-order AR processes – the application of factors as first-differences 

therefore focuses on ‘shocks not trends.’  In Figure 2, at the industry sector level,  

  

 
31 Ibid., page 2. 
32 See, Moody’s, (2016), and Nazeran and Dwyer, (2015), 
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similar, to aggregate credit losses, we also see large cyclical deviations in the factors from 

average credit conditions represented by the blue line at sigma = 0. The units in Figure 2 are 

normalised standard deviation.  

 

 

Figure 2:  Credit Cycle Indices for the Technology and Oil/Gas Sectors 

Source: Moody’s CreditEdge EDFs and Z-Risk Engine Calculations (Sep 1990 to Sep 2023) 

 

The historical credit loss cycles we observe in Figure 1, supports the development of well 

specified, empirical credit factor models that predict a component of unexpected credit risk 

shocks that we see in Figure 2. Our long-time work developing and implementing credit 

factor models can be found in Forest and Aguais, (2019, a, b, c ) and, Chawla, Forest and 

Aguais (2015, 2016, a, b). These models have been approved to support multiple bank 

risk/regulatory use cases, including Basel II, stress testing and IFRS9.  

Empirical studies drawing on default and loss data show that, to model business credit losses 

accurately on a point-in-time (‘PIT’) basis, the PD and LGD models must include inputs that 

track the occasionally large, unexpected variations in market values. For listed companies, 

these inputs could, as in the case of the Moody’s CreditEdge model, derive from the market 

values, market volatilities, and book liabilities of the companies themselves. But in broader 

applications including unlisted companies, one must apply a related, but different approach. 

For this, one can create credit-factor indexes from the PIT PDs of listed companies (EDFs) 

grouped by industry or region. Then, for companies within each combined industry and 

region, include the relevant indexes as variables together with others measuring through-

the-cycle (TTC) risk in the applicable PD and LGD models. Such models provide a solid basis 

for running credit scenarios. However, many current CRST studies as pointed out in Aguais 

and Forest (2023, b) fail to account for these unexpected shocks especially the broad cyclical 

ones underlying credit stress outcomes.  
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1.6.  A Framework for Integrated CRST for Wholesale Credit Risk 

 
The integrated approach we develop builds on our long-time credit factor modelling and our 
recent credit/climate research. The approach starts with current NGFS  scenarios that are 
combined with the ECB firm-level approach that links deterministic physical and transition 
risks to firm-level PDs. The combined NGFS/ECB approach assesses credit/climate risk on 
wholesale company-specific PDs. Climate-change scenarios typically show upward trends in 
costs related to physical damage, transition to greener technologies, and selected policies 
(e.g., carbon taxes) designed to deter businesses from emitting CO2 and other GHGs. The 
ECB approach assumes that some firms, particularly those with above average exposures to 
climate risk, only partly pass through these rising costs.  
 
For such companies, incomplete cost passthrough causes profitability to trend down, book 
leverage to increase, and defaults and credit losses to drift up. Since these rises in default 
losses occur as trends, not as cyclical variations, we introduce them into our climate-
scenario models by having the through-the-cycle (‘TTC’) PDs of credit portfolio exposures 
drift upward for ‘brown’ firms and potentially downward for ‘greener’ firms. The concept of 
TTC Drift as a way to apply the ECB approach in our proposed integrated solution was 
outlined in Aguais and Forest (2023, d and f).  
 
We characterize these climate-driven, ‘brown/green’ firm-level PD changes as ‘TTC Drift’ 

because observed, long-run TTC PDs for given credit grades (bank internal or Rating 

Agencies) or for EDF-derived industries/region credit factors do not normally reflect rising or 

falling systematic trends. Therefore, systematic climate impacts on individual firms can be 

described as ‘TTC Drift’ relative to historically observed, stable TTC PDs (no drift).  

It is important to note, that we discuss two distinct kinds of ‘TTC Drift’ in this paper. As 

described above, we integrate the ECB climate sensitive approach for assessing physical and 

transition risk by adjusting firm-specific PDs to reflect climate trend effects. In addition, we 

also develop the concept of ‘Aggregate TTC Drift,’ which is derived from aggregate climate 

effects that lead to rising, aggregate expected portfolio credit losses due to future rising 

climate on credit portfolio volatility.  

This paper is organised as follows: in Section 2 we discuss a high-level CRST model 
architecture to compare and contrast the current NGFS/ECB approach to the proposed 
integrated approach that expands the underlying credit model foundations. This simplified 
architecture is divided into a climate/macro model block and a climate/credit risk block. We 
also outline how the approach assesses combined credit/climate risk effects. Then we 
provide a brief review of key parts of the CRST literature to set the context for the proposed 
approach.  
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In Section 3 we outline the key components of the proposed integrated approach and 
present the results of applying the integrated approach to a roughly £140 bil UK/European 
wholesale credit portfolio. We use the illustrative credit portfolio in conjunction with 
various NGFS scenarios to assess key CRST credit measures, including, PDs, expected credit 
losses (ECL) and credit risk ‘tails’ (UL). We also present an additional custom scenario 
suggesting a 3 Centigrade rise by 2050. 
 
In this paper we derive the details of the proposed approach, but more formal calibration of 
the key climate parameters remains as ongoing research. Therefore, in applying the 
approach we make the following key simplifying parameter assumptions: 
 

• The Z credit-factor volatility related to rising climate impacts, primarily physical risk, 
follows the illustrative approach presented in Aguais and Forest (2023, b), and, 

• We apply a set of industry sector and region betas derived from various industry 
climate risk analysis as described first in Aguais and Forest (2023, c).33 

 
Section 4 summarises the paper and provides a juxtaposition between the current, 
mainstream credit/climate CRST approach (NGFS/ECB) and the proposed integrated 
approach. In Section 5, Appendix I we provide the full, step-by-step derivation of the 
proposed CRST approach. In Section 6, Appendix II, we summarise the characteristics of the 
£140 billion credit portfolio we use to develop prospective credit/climate scenarios. In 
Section 7, Appendix III we outline an example of developing scenarios by applying the 
deterministic scenario use case that applies Z factor credit/climate shocks as add-factors. In 
Section 8, Appendix IV we present an example scenario for developing a dynamic net-zero 
portfolio strategy. 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
33 We explain the industry/region credit/climate betas in more detail later, but these betas are aggregated for 

brevity and because we don’t currently have a climate-sensitive PD model. The sector betas are proxies we 

apply for primarily cross-sector carbon intensity effects between high and low carbon sectors in the absence of 

applying a firm-level credit/climate model.  
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2.0.  CRST Model Architecture and Brief Literature Review 
 

2.1.  Overview 

 
To set the context for the integrated CRST approach presented in Section 3, in this section 

we: 

• Compare a high-level CRST model architecture for the current NGFS/ECB approach to 

our proposed, integrated credit/climate framework,  

• Review key aspects of credit modelling, and highlight the role of the Merton Model 

as the usual approach used to assess credit risk and systematic credit shocks, 

• Highlight the key role that Point-in-Time credit measures and models play as the 

most accurate measure of credit risk, 

• Review what we see as the two main strands of research driving current CRST 

scenario development, and, 

• Summarize ways in which the two research strands in the literature relate to the 

proposed integrated approach. 

 

We divide the CRST literature into two research strands; (1) recent studies that trace climate-

change effects on credit risk to rising costs (cost-passthrough), and (2) studies that develop 

climate-change risk factors from financial-market data (market-based) and investigate the 

extent to which those factors affect the market values, values at risk, and PDs of financial 

and non-financial businesses.  Given the density of CRST research, not all of the current 

research on climate scenarios fits exactly into the two strands we highlight, but we find this 

simplification helpful.  

This brief literature review is not meant to be exhaustive, but it is focused on the most 

important research contributions we see as relevant for the CRST approach we propose. The 

following recent references provide a more detailed review of the CRST literature, including, 

Desnos et al. (2023), Reinders, Schoenmaker, and van Dijk, (2023), Baer et al. (2023), and 

Cartellier (2022). 

 

2.2. High-Level CRST Scenario Modelling Architectures: Current (NGFS/ECB) vs An 

Integrated Credit/Climate Approach 
 

We refer to the combined NGFS/ECB approach as the current, primary CRST approach which: 

• Develops top-down, deterministic climate scenarios from a combination of NGFS 

scenarios, macro models, SSP and RCP pathways, and other satellite models, 

• Assesses physical and transition climate risk sensitivity, 

• Applies climate ‘shocks’ primarily as ‘deterministic trend adjustments,’ 

• Analyzes carbon mitigation effects by applying various carbon tax/price assumptions, 



MARCH 2024                                                                                                                                       

18 

ZRE Research Paper, With Support From CGFI: An Integrated Credit/Climate Scenario  
Approach Combining Firm-Level Climate Sensitivity with Climate Volatility Add-Ons 
Copyright ©2024 Aguais and Associates Ltd. All rights reserved. www.z-riskengine.com 

• Specifies industry sector economic measures (GVA) usually as derived directly from 

‘down-scaling’ of macroeconomic aggregates (not as dedicated sector models), and,  

• Assesses firm-specific climate impacts by adapting mainstream wholesale credit 

models to add credit risk sensitivity to physical and transition climate risk factors. 

 

Figure 3 shows a simplified model architecture for the NGFS/ECB scenario approach, where 

we summarize the current sub-components in the combined NGFS scenarios, within the top 

model block depicting ‘climate/macro’ risks. The lower model block depicts ways in which 

the top-down climate scenario variables influence climate-related credit risks. The main 

credit/climate channel is shown as impacting firm credit risk through transition and physical 

risk impacts on a firm’s PD. 

Figure 3:  NGFS/ECB High-Level CRST Model Architecture 

(The representation of Credit/Climate risks is shown as red dotted lines to suggest the current 
approach is only partially complete) 

Figure 3 is a simplified representation but it captures the key model architecture and 

highlights the simplified, deterministic approach to assessing climate/credit risk. The 

NGFS/ECB approach, as currently specified, does not account for past, observed 

unanticipated credit risk shocks referred to as credit cycles. This approach also does not 

account for potentially rising future volatility that could increase the impacts of future 

climate or credit risk shocks. The integrated approach we present includes both of these key 

risk increasing effects. 

In comparison, in Figure 4 we show a high-level model architecture for our proposed 

integrated scenario approach. 
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Figure 4:  Integrated CRST Scenario Model Architecture 

 

The proposed, integrated credit/climate scenario architecture shown in Figure 4: 

• Applies the same top-down, deterministic climate scenarios and variables used in the 

current NGFS/ECB framework from the top model block, 

• Also, applies the current ECB firm-level climate sensitivity approach as in Figure 3, as 

in box (1), 

• Integrates past observed, unanticipated credit risk shocks through the Z 

sector/region credit factor model calibrated to past Moody’s CreditEdge EDFs, as in 

box (2), and, 

• Adds additional, future climate ‘shock’ impacts from rising GMT as rising volatility 

adjustments (‘VM’) to the future scenario paths for the industry and region credit 

factors as in (3). 

 

In Figure 5 below, we also show conceptually how wholesale PD models in the proposed 
integrated approach could incorporate the three key credit/climate risk scenario building 
blocks from Figure 4.  
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Figure 5:  Integrated CRST: Combined Climate/Credit Impacts on Firm-Level PDs 

 
The CRST combined credit/climate scenario four building blocks shown in Figure 5 include: 
 

(1) Bank’s current firm-specific IRB PD Models (TTC)  
(2) Physical and transition risk sensitivity added to firm-specific PDs: 

 

• Follows the general ECB approach or alternatives 

• Implemented as ‘TTC Drift’ climate sensitivity trend adjustments  
 

(3) Systematic credit risk shocks added through sector/region Z credit cycle factors 
(4) Rising climate induced volatility by linking climate variables like rising GMT to rising 

adjustments to the Z innovations (‘e’) in the credit factor simulations as in Aguais 
and Forest (2023, b) 

 

In Figure 5, the PD-boxes shown on the left in Figures 3 and 4, have been split into separate 
PD model components for the usual PD specification (TTC) and the separated climate 
sensitive adjustment. Overall, the integrated approach shown conceptually in Figure 5 
supports two scenario development use cases, based on either stochastic or deterministic 
credit/climate shocks. 

 

2.3.  Modelling Credit/Climate Risks 

 

2.3.1.   Credit Modeling Facts and the Merton Model 

 

Most credit models depict default risk as arising from unexpected shocks, not foreseeable 

trends. We see this in the following description of the Merton model of business default risk. 

Today one can observe a firm’s past and present asset value in relation to liabilities and cash 

flow relative to debt service. If a firm currently has appreciable margins of asset value over 

liabilities and cash flow over debt service, it is solvent. In explaining the probability of such a 

firm defaulting over a chosen horizon such as the next quarter, year, or three years, the 

Merton model addresses the following question: how likely is it, at any time up to the 
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horizon, that a series of shocks to asset value over liabilities or cash flow over debt service 

would cause the firm to default?   

To get quantitative answers to this question, one specifies and estimates a model for the 

stochastic evolution of a firm’s assets/liabilities or cash flow/debt service relative to 

identified default barriers. Shocks can either be idiosyncratic, specific to a firm, or 

systematic, shared by many firms. In the data on past defaults and losses, one sees evidence 

of occasionally large, systematic shocks as in Figure 1.  

The so-called Merton model provides the central approach to modeling default risk of firms. 

Under Merton, default arises from the interplay of leverage and volatility, with leverage 

typically defined as the logarithm of the market value of assets over the book value of 

liabilities and volatility as the standard deviation of future probabilistic leverage.34  High 

leverage implies a small margin between assets and liabilities and thus a comparatively high 

probability that asset value in the future will fall below liabilities by enough to trigger 

default.  High volatility implies a wide range of future leverage values, with a comparatively 

high probability that assets will fall relative to liabilities by enough to cause leverage to drop 

below a solvency threshold value. High leverage and high volatility together imply an even 

higher probability of default. Low leverage and volatility imply the reverse. 

In almost all formulations, the Merton probability of default model is convex in the range of 

PD values encountered in practice. This convexity implies that a symmetric distribution of 

future leverage values produces an asymmetric distribution of PD values, with comparatively 

high PDs occurring more frequently than in a normal distribution. This explains how one gets 

realistic asymmetric credit-loss distributions from symmetric leverage shocks. See Belkin et 

al. (1992) and Chawla, Forest and, Aguais (2016, a) for a discussion of this convexity 

property. Further asymmetry may arise if the leverage shocks themselves are asymmetric. 

The Merton-style PD model applies to the full range of wholesale credit applications, 

including those focusing on climate-change effects.35 To get the PD impacts of climate 

change on business PDs, one must estimate the transition- and physical-risk effects on cash 

flows, asset values, leverage, and leverage volatilities of firms. One then enters those inputs 

incorporating those effects into a Merton model. Under varying climate scenarios, the inputs 

change, not the model. Consistent with the literature, we focus primarily on PD but the same 

remarks apply to LGD and EAD modelling. 

2.3.2.  Market-Value Credit Inputs Required for Assessing PIT Credit Measures 

 

Many credit rating models within banks and credit-grading agencies (e.g., S&P, Moody’s, 

Fitch) involve only book value financial ratios and credit-analyst judgmental assessments for 

the inputs determining PDs or rating grades. However, the PDs arising from such models 

explain little of the wide cyclical variations in default rates and thus are considered as 

 
34 See, Kealhofer, (2003), and Capasso et al. (2020) also utilize a default-distance approach as a starting point 
in assessing credit/climate impacts. 
35 For clarity we use the term ‘wholesale credit’ to apply to large corporate and SME, commercial borrowers, 
and exposures. 
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producing close to through-the-cycle (TTC) measures. As first revealed by KMV in the late 

1980s, to produce point-in-time (PIT) PDs that track at all closely the cyclical variations in 

default rates, a default model must include market-value inputs.36  Dual credit rating 

approaches include both TTC and PIT credit measures to support multiple bank risk and 

regulatory objectives, with our extensive credit model research over the last 20 years having 

led the way in designing and estimating PIT/TTC dual ratings. See, Aguais, et al. (2004, 2007) 

for early methodological foundations of PIT/TTC credit models.   

Point-in-Time (PIT) Versus Through-the-Cycle (TTC) Credit Models: Point-in-time (PIT) credit 

models attempt to explain the default and credit-loss rates of firms, credit facilities, and 

credit portfolios at each time point. Through-the-cycle (TTC) measures explain only relative 

default and credit-loss rates of individual firms and facilities at each time point, with the 

numerical rates for broad portfolios set to long-run average values. Since default and loss 

rates vary over time, with the highest default rates of broad portfolios over a year standing 

above long-run average values by more than 2.5X and with the highest annual loss rates 

rising above long-run average values by more than 3X, successful PIT models have been 

shown empirically to estimate default and loss rates much more accurately than TTC ones 

due to systematic credit cycles.  In past trials with estimating default models, we have 

obtained a goodness of fit at least double that of a close-to-TTC model by adding Z indices 

designed to translate the model into a PIT one. 

Credit Cycle DDGAP and Z Credit Factor Indices: As explained in the text, ZRE’s credit-cycle 

DDGAP and Z indices arise by summarizing, for selected segments such as industries or 

regional groupings, the listed-company PDs from a PIT model such as Moody’s CreditEdge. 

By adding these indices as inputs to an otherwise close-to-TTC model such as those 

commonly used by banks in determining credit grades, one gets PIT measures which are 

now required for projecting expected credit losses used in for determining loss provisions 

under the IFRS9 or CECL accounting standards for bank provisions.  

See below (Figure 6), from one of our earlier research papers, Forest and Aguais (2019, c), 

the PIT estimates obtained by adding Z indices to a TTC model explain the time series of US 

C&I loan-loss rates much more accurately than the flat TTC values. For the Federal Reserve 

loan loss charge-off data, Z-factor adjusted PIT model estimates of loan charge-offs are 

substantially more accurate in predicting observed historical loan losses as compared to flat, 

long-run TTC loss estimates.   

 
36 See, Kealhofer, (2003) and Moody’s, (2016). ‘KMV’ was a firm founded by, S. Kealhofer, M. McQuown, and 
O. Vasicek that pioneered the EDF methodology and was acquired in 2002 by Moody’s Corporation. 
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Figure 6:  PIT and TTC Loss-Rate Estimates Compared with Realized Value 

Source, Forest and Aguais (2019, c) 

As another example, we see in Figure 7 the importance of applying market-based measures 

to assess PIT risks. Figure 7 provides a comparison of default rates estimated alternatively by 

the Moody’s RiskCalc Financial-Ratio-Only (FSO) and Credit-Cycle-Adjusted (CCA) models. 

The CCA model adjusts the FSO estimates for the credit-cycle effects implied by market-value 

measures. Ignoring level differences reflecting RiskCalc adjustments for entities that stop 

reporting, we see that only the CCA model tracks the cyclical variations at all closely. We use 

the Moody’s RiskCalc model example to show the increased default rate accuracy because 

the RiskCalc CCA model applies a similar credit factor approach as our Zs.  

 

Figure 7:  RiskCalc EDF Credit Measures vs Observed Default Rate 

Source:  Buitrago et al. (2019). 

 



MARCH 2024                                                                                                                                       

24 

ZRE Research Paper, With Support From CGFI: An Integrated Credit/Climate Scenario  
Approach Combining Firm-Level Climate Sensitivity with Climate Volatility Add-Ons 
Copyright ©2024 Aguais and Associates Ltd. All rights reserved. www.z-riskengine.com 

2.4.  Climate-Change Credit-Impact Studies 

 
Many recent studies on the effects of climate change on credit risk fall within one of two 

strands of research. In one strand, climate-change-related cost increases reduce the 

profitability of some firms and thereby raise their probabilities of default (PDs). In the other 

research strand, shocks in financial-market-derived climate-risk factors reduce the market 

values of some firms and thereby raise their PDs.  

2.4.1.  Cost-Passthrough Studies 

 

In several recent studies, incomplete passthrough of climate-change-related cost increases 

cause profitability to fall and defaults to rise. Those cost increases could derive from such 

things as higher carbon taxes, faster asset obsolescence, brown-to-green-transition 

missteps, or rising physical damage caused by wildfires, droughts, floods, cyclonic storms, 

and so on.  

Incomplete cost passthrough along with increasing leverage accounts for the climate-change 

impacts in the two ECB studies (2021, 2023). In both cases, the studies assume that firms: 

• pass through only part of the cost increases related to climate change,  

• make no effort to mitigate the related effects on credit risk through deleveraging, 

and, 

• finance green investments entirely with debt, thereby causing leverage to rise.  

  

Instead, at least for carbon taxes, as implied by long-run demand/supply analysis, one might 

assume that the cost passthroughs would be incomplete, complete, or more than complete 

depending on whether a firm experienced above-average, average, or below-average cost 

rises. Indeed, the broad economy-wide recycling of carbon-tax proceeds could, under some 

policies, lead to small increases in GDP and employment and smaller declines in overall PDs 

on an aggregate basis. Further, one might assume that firms would finance their green 

investments with the customary mix of debt and equity and one might assume that firms at 

least partly offset the unrecovered cost rises by deleveraging. Under these alternative 

assumptions, the estimates of overall climate-change impacts would be smaller.  

Reinders, Schoenmaker, and van Dyke (2022), apply discounted-cash-flow analysis linked to a 

Merton contingent claims model in estimating effects of a carbon tax on equity and debt 

valuations under the alternative assumptions of 0% and 50% passthrough. While the authors 

refer to the carbon tax as a shock and distinguish it from ongoing policies already priced into 

business asset values, the results reflect somewhat less than plausible assumptions on the 

nature of policy changes. As a general rule, illustrated by the US Federal Reserve’s practice of 

forward guidance, major policy changes almost never occur as abrupt shocks. Instead, they 

get phased-in gradually, following an extensive review process. However, while the policies 

themselves might be phased in, one might still find that market anticipations related to the 

possibility of carbon taxes or other climate-related phenomena could change abruptly, 

affecting business PDs. As an important insight on beneficial effects of cooperation, less-
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than-full passthrough leading to credit impacts could also occur if neighboring countries fail 

to match the tax.  

Desnos, et al. (2023) examine the effects of carbon taxes on costs in an industrial input-

output framework extended to include greenhouse gas emissions. The study derives a range 

of impacts under varying assumptions on cost-passthrough rates related to demand and 

supply elasticities. The study presents results from running Monte Carlo simulations in which 

passthrough rates and passthrough correlation coefficients are stochastic.  

The carbon tax studies involve standard demand/supply analysis of the effects of an excise 

tax. Most of these studies try to estimate the effects on profit margins and thereby, apply 

further assumptions, on PDs. The impact on margins and credit risk depends on the shape of 

both the demand and supply curves as we show examples in Figure 8. Under perfect 

competition, the long-run supply curve is horizontal and effects on margins and credit risk 

would be small. With upward sloping supply due to firms differing in their scarce-resource 

endowments and with some firms earning rents, cost passthrough could be incomplete, 

margins compressed, and PDs raised. 

As a separate point, even in this case of upward sloping supply, the effects on outputs, 

prices, and margins depend more broadly on how the tax revenues are recycled. While the 

excise tax shifts supply down, recycling of tax proceeds shifts demand up. In Figure 8, as 

shown in the middle panel, for firms with average carbon intensities, one would expect 

prices to rise roughly in line with the tax (mostly full cost passthrough), implying limited 

changes in margins, default risk, and outputs.37 Observe that the margins on sales 

correspond to the gaps between the horizontal price line and the supply curve.  The left-

hand panel for high carbon intensity firms shows margins compressed and the right-hand 

panel for low carbon intensity firms shows margins expanding. 

Outputs overall as indicated by the middle panel for average intensity firms remain mostly 

unaffected, which is as intended since the excise tax is not designed to be an austerity (or 

stimulus) measure. Thus, macroeconomic analyses of carbon taxes, see Pomerleau and Asen 

(2019), typically find relatively small economic effects and, under some recycling schemes, 

potentially positive impacts on output and employment. 

 
37 See, European Commission, Directorate-General for Climate Action (2015) for empirical estimates of cost-
passthrough measurements by industry sector. 
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Figure 8:  Carbon-Tax Supply and Demand Shifts for Products with Above Average (Left 
Panel), Average (Middle Panel) and Below Average (Right Panel) Carbon Intensity 

Thus, one would expect carbon taxes to have limited overall effect on PDs, but with highly 

carbon intensive firms suffering rises and low carbon intensive firms experiencing declines. 

However, even this limited result requires the further assumption that firms fail to adjust 

leverage in responding to changes in sales margin. Such changes in leverage represent a 

possible behavioral response. At present, we know of little empirical evidence on its 

magnitude. 

Rising incidence of physical-risk events shifts supply down (through such things as more 

business interruptions and faster capital depreciation). Here, no revenue recycling occurs. 

With more output diverted to capital replacement, consumption growth will slow and with 

productivity impaired by business interruptions, output growth may slow as well. The effects 

on margins and credit risk would likely be small in the aggregate, with adverse (beneficial) 

effects on high-risk (low risk) firms.   Again, deleveraging could somewhat mitigate the 

impacts. 

2.4.2.  Financial Risk-Factor Approaches 

 

This second strand of research draws on market-price data in attempting to identify climate-

risk impacts.38 This typically involves building climate-risk factors based on structured 

portfolios of equity prices and then investigating the statistical relationships between these 

factors and other market prices or credit-worthiness measures. One approach creates a so-

called brown-green transition-risk factor as a long-short equity portfolio, with long positions 

in high-emission companies and short ones in low-emission companies. Most of the studies 

find statistically significant and often increasingly strong relationships between market prices 

(e.g., of financial institutions) and transition-risk factors, but typically statistically 

insignificant relationships for physical-risk indicators. The absence of a statistical relationship 

between market values and physical risk is disappointing since physical risk represents the 

fundamental threat from climate change and transition risk is a derivative of that.  

 
38 Bansal, et al. (2019) as one example, provide analysis of correlations between climate and market prices, 
‘We also find that long-run temperature fluctuations carry a significantly positive risk premium in equity 
markets.’, see page 30. 
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Jourde and Moreau (2023) build transition and physical risk factors based on long-short 

portfolios of equity issues and find that financial-institution returns respond significantly to 

the transition-risk factor but only insignificantly to the physical risk one. Jung, Engle, and 

Berner (2023) construct a variety of financial-market-based transition-risk factors and find 

that bank returns react negatively to shocks in each of the transition factors, with the 

relationships statistically significant in three out of four cases. Novella (2022) finds a negative 

relationship between Eurostock company default distances and carbon intensities. Farallia 

and Ruggiero (2023) find a positive correlation between CreditEdge EDFs and transition-risk 

indicators and identify the volatility component of EDFs as the main channel of influence.  

2.5.  Summarizing Climate Impacts in the Integrated Approach 
 

The integrated model we propose combines two sources of climate-change-related credit 

risk, one characterized by upward or downward drift in individual firm TTC PDs based on 

direct climate effects and the other by rising cyclical volatility in the industry and region 

credit-risk factors influencing PIT PDs, LGDs, and EADs. In general, in the credit/climate 

literature, the focus is usually on assessing PD effects only. The Z-Risk Engine solution 

assesses key credit models for PD, LGD and EAD on both a PIT and TTC basis, so the 

approach is more general than much of the climate risk literature, but the application of TTC 

Drift presented here is just on PDs. 

The cost passthrough approach is applied in the firm-level ECB climate scenario approach as 

TTC Drift and the Zs we apply are market-based, so they are consistent with the market-

based literature. At the end of Section 5, Appendix I, in 5.6, we suggest ways to derive 

physical and transition factors mentioned above and link them to our Z credit factors to 

refine the climate factor calibration and application that would be an extension to the 

concept of the climate volatility multipliers. 
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3.0.  Applying the Integrated Approach to Assess Climate Risks 
 

The climate-sensitive ZRE model extends our existing approach to projecting PIT PDs, LGDs, 

and EADs by including two sources of climate-change-related credit risk. The first one is 

characterized by upward or downward drift in individual firm TTC PDs, with this caused 

potentially by differences in climate-cost-passthrough rates. The second effect occurs due to 

rising cyclical volatility in the industry and region credit-risk factors influencing PIT PDs, 

LGDs, and EADs. Most of the existing credit/climate literature considers PD effects only.39 

Therefore, the interaction of firm-level climate sensitivity effects with fully specified credit 

risk factor models subject to climate volatility effects represents a new contribution to the 

credit/climate literature. 

3.1 Climate Sensitivity Modelled as Firm-Specific TTC Drift 

 

Here we assume that businesses face gradually increasing costs tied either to policy-driven, 

potentially costly transitions from higher- to lower-emissions technologies or to rising 

physical damage caused by climate change. In markets with upward-sloping, long-run supply 

curves, the cost increases of firms with above average climate exposures may be less than 

fully passed through into prices, thereby causing profit margins to decline. On the other 

hand, the lesser cost increases of firms with below average exposures may be more than 

fully passed through (with market price rises set by the cost increase of the average-

exposure firms), causing margins to increase. Under the further assumption that firms with 

falling profitability choose not to fully offset this through deleveraging, debt coverage would 

trend down, causing PDs to drift up. Under similar assumptions, the firms with below 

average exposures would have PDs drifting down. The net aggregate effect in each case 

would likely be small, which is broadly consistent with most credit impact studies published 

so far. 

As we outlined in Aguais and Forest, (2023, d, f) it is possible to apply the climate sensitivity 

impacts on firm-specific PDs derived from an ECB-style PD model as TTC Drift. In our first TTC 

Drift research note (2023, d) we demonstrated the concept of TTC Drift as a shift over time 

for an aggregate credit portfolio by shifting downward the aggregate credit grade 

distribution. In (2023, f) we refined this suggestion and proposed using an ECB-style climate 

sensitive PD model to derive a time-series of firm-specific, annual PDs over the scenario 

horizon. These climate-sensitive PDs would reflect for each firm the physical and transition 

risk impacts of various NGFS scenarios. Climate-adjustments would be applied to an ECB-

style PD model that estimates the future cost rises and profits squeezes tied to climate-

change mitigation policies and to increasingly severe physical impacts of climate change. We 

include those effects by having the TTC PDs for individual firms in a credit portfolio being 

 
39 The 2021 ECB approach did include indirect climate impacts on LGDs through collateral re-valuation but 
most emphasis in the related literature focuses on PD climate sensitivity primarily.  
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modeled as a drift upward or downward at the rates indicated perhaps by an ECB-type PD 

model. 

3.2 Rising Climate Risks Applied Generally as Increases in Risk-Factor-Volatilities 

 

In this case, we assume that the volatility of credit-risk factors (Zs) rise as climate-change 

occurs, and we have developed a general volatility multiplier but in principle separate 

volatility multipliers could be applied for each industry sector and region Z. The Z factors 

track the unexpected changes in the systematic credit conditions that cause PIT PDs, LGDs, 

and EADs to rise and fall broadly. The climate-related increase in Z vols leads to higher values 

for both expected and especially stress (high percentile) losses. Therefore, future simulated 

climate shocks produce larger effects relative to historical credit shocks on their own due to 

climate impacts. These rising combined credit/climate shock impacts will be much larger in 

high emission, high carbon intensity sectors. The expected credit risk increases tied to rising 

vols are separate from those caused by climate-related cost rises (TTC Drift). As in Figure 4, 

the approach assesses two different channels for climate to impact credit risks.  

We include these effects by having the volatility of Z innovations rise over time at rates 

implied by a climate-change metric. As in Aguais and Forest (2023, b), we specified the vols 

to rise on average at rates implied by the GMT increases in a chosen NGFS climate scenario. 

In ongoing, future climate research, for calibration and implementation of the integrated 

approach, we plan to assess having the Z vols change potentially at the rates implied by 

market-derived transition-risk (T) and physical-risk (P) factors. Current industry, exploratory 

studies for example, are extracting such T and P factors from structured portfolios of market 

prices. In future model calibration, after obtaining an overall rise in vols, we could distribute 

that average rate of increase to various segments or even firms by applying ‘beta’ 

coefficients reflecting relative transition- and physical-risk exposures. Thus, industries with 

greater than average (lower than average) exposures experience above-average (below-

average) vol rises.  

We next apply the Z models with rising vols in running Monte Carlos sims of credit losses. 

Climate scenarios with higher vol rises will have greater credit losses. Alternatively, ZRE can 

run deterministic scenarios in which the inputs of Z-innovation paths (‘add factors’) derive 

from detailed climate narratives for a particular climate scenario as we outline in Section 7, 

Appendix III based on Aguais and Forest (2023, e).  

3.3 Integrated Model Approach Description 

 

The integrated model includes both the TTC drifts and the vol rises implied by a climate 

scenario. The estimated losses will then combine the effects of both sources of climate-

related credit risk.  

Here we briefly describe the extended ZRE model applied in running CRST scenarios that 

combines firm-level climate physical- and transition-risk sensitivities with a multi credit 

factor model calibrated to market-based default-risk measures. For a detailed mathematical 

description of the modeling approach see Section 5, Appendix I. 
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We start with the existing ZRE application that involves DDGAP (‘Default Distance GAP’) and 

Z credit-risk-factor indices for each of several industries and regions. ZRE obtains those 

indices by: 

• converting the point-in-time (PIT) PDs of listed firms from a model such as Moody’s 

CreditEdge into default-distance (DD) measures,  

• summarizing those DDs of listed firms within an industry or region by computing 

medians,  

• forming DDGAPs by normalizing the median DDs around the long-run average of 

those median DDs, and 

• creating Zs by dividing the DDGAPs by the standard deviation of annual DDGAP 

changes. 

Next, we project the stochastic evolution of the Zs (and DDGAPs) for each industry or region. 

ZRE accomplishes this using autoregressive second order (AR2) models calibrated to the 

historical time series of Z values.40 After that, by entering the credit-cycle-indices for 

stochastic or deterministic scenarios into the PD models for firms and the LGD and EAD 

models for facilities, ZRE produce the related PD, LGD, EAD, and credit loss scenarios. 

To allow in ZRE for prospective effects of climate change on credit-risk factors and thereby 

defaults and losses, we assume that the volatilities of the Z-factor innovations rise together 

with a specified climate-change metric (currently the global mean temperature: GMT). To 

model trend effects associated with such things as cost passthrough, we assume that the 

TTC PDs of individual firms will trend up or down as determined by a climate-sensitive PD 

model for that firm. Presently, in modeling the climate-change volatility increases, we start 

with a relationship determining the overall average volatility. Then, to apportion overall 

average cycle effects to industries, region, or firms, we propose to apply beta coefficients 

based on emissions and location data. In our illustrations to date, we apply industry betas 

based on rough general estimates of the carbon intensities of those industries. 41 

3.4.  ZRE Climate Scenario Illustrations: Applying the Integrated CRST Approach42 
 

As noted above, the integrated approach can develop climate scenarios using either 

stochastic or deterministic methods. We focus here on the stochastic scenarios using the 

integrated approach which could be applied over both short and long-term time horizons. 

This stochastic approach includes both firm-level PD TTC Drift and simulations of the Z credit 

factors subject to climate-related increases in volatility.  

We describe the climate scenarios, and after that the portfolio-wide PD, LGD, EAD, and CL 

estimates. We use an illustrative roughly £140 billion UK/European large-corporate and SME 

 
40 Alternatively, for projecting the Z paths implied by a macroeconomic-variable (MEV) scenario such as those 
used in regulatory stress tests, ZRE applies a bridge model jointly calibrated to historical Z and MEV data 
(transformed into MEV Zs). See, Forest and Aguais, (2019, a) and Aguais and Forest (2023, b) for discussions of 
our approach for integrating MEV factors with our Z credit factors. 
41 We first applied the illustrative sector carbon intensity betas in, Aguais and Forest (2023, c). 
42 The ZRE version we use in these credit/climate scenarios includes our production Python code which is 
coupled with our ZRE beta credit/climate module to run these credit/climate scenarios. 
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portfolio outlined in Section 6, Appendix II to develop the various scenarios to assess credit 

losses including expected and 90% tail losses. For the stochastic scenarios presented here 

we have run 500 simulations – in implementation we would run more simulations to 

produce smoother stress scenario loss curves. 

The stochastic scenario cases include six based on the NGFS scenarios and a custom one 

based on a NGFS-type scenario with a more extreme (3-degrees Celsius) GMT rise by 2050. 
43 

3.5.  Scenario Descriptions and Assumptions 
 

To develop these climate scenarios, we apply two key assumptions to illustrate the 

approach, for climate volatility effects, we follow the approach applied in Aguais and Forest 

(2023, b). A discussion of the volatility multiplier specification is included in Section 5, 

Appendix I where we derive the mathematical details for the integrated approach 

(specifically in Section 5.5.1). 

In addition to the global vol multipliers, we also apply a set of Z general industry and region 

beta coefficients (factor loads) as presented in Table 1.44 The proposed integrated approach 

would ultimately be implemented with a firm-specific climate sensitive PD model along the 

lines broadly of the ECB approach. Prior to integrating a climate-sensitive PD model as firm-

specific TTC drift, the aggregate sector and region betas in Table 1 are basically proxies for 

the aggregate sector effects across high and low emission industries. For simplification we 

assume the beta coefficients remain constant throughout the scenario time spans but they 

could also be time-dependent in our general framework. 

We should be clear about the use of betas in the approach presented here. The betas 

applied in the scenarios as outlined, are the key assumptions that drive the differential 

climate effects by sector in relation to the Z model innovations. In Section 5, Appendix I, 

where we derive the overall approach, we also derive firm-specific TTC Drift as a company-

level beta that in implementation of the full approach would supplant the sector betas 

applied here which for the purposes of this paper are average aggregate proxies for 

individual firms. 

 

 

 

 

 
43 The NGFS scenarios and related models used here are discussed in more in Aguais and Forest (2023, b). 
44 For simplicity we aggregate the usual more detailed Z regions into aggregate regions for corporate and FIs. 
As Table 1 show, the differences for the industry sector betas are much larger and more important given the 
role that different sector carbon intensities play in relation to transition risk. 
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Table 1:  Industry and Region Beta Coefficients Applied in Climate Scenarios 

Sector Beta 

AEROSPACE & DEFENSE 0.76 

AGRICULTURE 1.03 

BANKING 0.76 

BASIC INDUSTRIES 0.89 

BUS & CONSUMER SERVICES 0.76 

CHEMICALS AND PLASTIC 
PRODUCTS 

0.89 

CONSTRUCTION 1.16 

CONSUMER PRODUCTS 0.89 

FIN, INSURANCE & REAL ESTATE 0.76 

HOTELS & LEISURE 1.03 

MACHINERY & EQUIPMENT 0.76 

MEDIA 0.76 

MEDICAL 0.76 

METALS 1.42 

MINING 1.42 

MOTOR VEHICLES & PARTS 1.16 

OIL & GAS 1.82 

RETAIL & WHOLESALE TRADE 0.63 

TECHNOLOGY 0.76 

TRANSPORTATION 1.16 

UTILITIES 1.42 

CORP REGION 1.02 

FI REGION 0.76 
Source:  See, Aguais and Forest (2023, c) for an explanation of the industry source for the 

industry/region betas. 

 

3.6.  Credit Portfolio Dynamics  
 

Dynamic-credit-portfolio sims estimate the defaults and losses that would occur over time 

on future portfolios of credit facilities. Static-portfolio sims estimate the losses that would 

occur over time on today’s portfolio of credit facilities. ZRE uses static-portfolio sims in the 

estimation of term structures of PDs, LGDs, EADs, and ECLs and thereby loan-loss provisions 

under IFRS 9 or CECL. ZRE uses dynamic-portfolio sims in estimating the time series of losses 

that would occur under future scenarios including stress-test and CRST ones.  

We describe below the ways ZRE implements dynamic-portfolio sims consistent with the 

conventional approach used generally in regulatory stress tests. In Section 8, Appendix IV, 

we also highlight an alternative dynamic scenario approach that applies one example of an 

alternative net zero portfolio strategy. 
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In projecting future portfolios, most scenario estimations including regulatory stress-test 

ones involve the ‘fixed portfolio’ assumption. This convention arises from the observation 

that, under an unchanging risk appetite, the dynamics of turnover and risk management 

imply that future portfolios of obligors and facilities would collectively resemble the current 

ones in terms of TTC (average) risks and exposures. As a tractable way of implementing this 

idea, the fixed-portfolio convention freezes the TTC attributes of obligors and facilities to 

those observed today. No one believes that future portfolios would remain so rigidly 

unchanging, but nonetheless this convention could produce results close to those coming 

from a more realistic depiction of future portfolios consistent with a fixed risk appetite.  

Under this convention, the obligors and facilities in the future portfolios become 

anonymous, no longer identical to those that exist now. In particular, the prospective 

representative facilities have maturities and limits that remain fixed over time, whereas the 

current ones have maturities that shrink and limits that may amortize and will eventually 

vanish. Further, the prospective, representative obligors have TTC PDs that remain the same, 

whereas the current ones have TTC PDs that evolve probabilistically.  

ZRE’s fixed-portfolio sims freeze the TTC risk attributes, not the PIT ones. Thus, as the 

simulated Zs rise and fall, portfolio credit losses vary. And in a deterministic stress scenario in 

which the Z indices would drop sharply, credit losses would rise substantially. 

Occasionally in their credit-loss scenarios, banks include dynamics beyond those implicit in 

the fixed-portfolio convention. If, for example, a bank has announced an unwinding (building 

up) of a particular portfolio segment, it would in its baseline and stress scenarios justifiably 

show exposures to the related entities trending down (up). 

3.7.  Adaptation and the Evolution of Climate Vols 
 

Global warming creates a race between changes in physical and economic conditions and 

efforts to adapt to mitigate the harmful effects of those physical and economic changes. If 

the harmful effects outpace adaptations, the creditworthiness of businesses may well 

deteriorate. If the adaptations keep abreast of the physical and economic changes, the credit 

impacts would likely be smaller. 

Over the past 33 years for which we have credit-factor Z data, GMT has risen by about 0.8 

degree centigrade. This exceeds the increases over the next 30 years projected in virtually all 

NGFS climate scenarios. In the most severe Current Policies scenario, the projected increase 

is 0.75 degree. Since we have witnessed no obvious signs of material, broad-based climate-

related credit deterioration in the past, this suggests that the credit impacts would generally 

be smaller or localized in the next 30 years except under scenarios much worse than the 

NGFS ones. Of course, threshold effects including potential physical and socioeconomic 

tipping points could produce larger impacts than one would infer from experience. The 

illustrative volatility multiplier we apply depicts climate impacts on factor volatilities that rise 

at an increasing rate, as a first step in including complex future, non-linear impacts. 
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3.8 TTC Drift: Individual Firms vs Aggregate Portfolios of Firms 

 

Climate-change scenarios typically show upward trends in costs related to physical damage 

and transition to greener technologies, with the latter possibly promoted by policies (e.g., 

carbon taxes) designed to deter businesses from emitting CO2 and other GHGs. Some 

climate-scenario models including the one developed by the ECB (2021, 2023) assume that 

some businesses, particularly those with above average exposures to climate risk, only partly 

pass through these gradually rising costs. For such companies, incomplete cost passthrough 

causes profitability to trend down, book leverage to increase, and defaults and credit losses 

to drift up. Alternatively, firms with below-average costs may experience a drift down in PDs. 

We explain below a way of incorporating this into our climate-scenario models. 

Since these effects occur as trends, not as cyclical variations, we introduce them into our 

climate-scenario models by having the through-the-cycle (TTC) PDs of the exposures in the 

representative, credit portfolio drift up or down. The modelling of firm-level climate 

sensitivity as a rising credit trend impact on TTC PDs provides an approach for integrating 

firm-level effects with credit factors and represents a new contribution in the literature. See 

below one example of upward TTC drift (Table 2). Here the mix of credit grades in the 

portfolio deteriorates gradually, with the shares of lower risk grades falling and the shares of 

higher risk grade rising. In this example, the shift produces a change over 2023-2050 in the 

overall, TTC PD about the same as that projected by the ECB 2021 model in the most severe, 

Hot House scenario. 
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Table 2: TTC Risk Grades Without and With TTC Drift 

Source:  Moody’s CreditEdge, NGFS, Z-Risk Engine Calculations 

In most of the existing models, TTC drift occurs due to incomplete cost passthrough. 

However, the aggregate TTC drift can also arise from increases in credit-factor volatilities. In 

our model, these aggregate volatility impacts are industry and regional.45 If firms maintain 

leverage fixed and the vols drift up, then the ratios of leverage to volatility would drift down, 

producing upward drifting PDs. Alternatively, one can see this occurring due to an increase in 

the average caused by increased volatility interacting with the convexity of the PD function. 

We examine this in some climate scenario results presented here. 

One should note that an upward drift in the aggregate TTC PDs of the representative 

portfolio contradicts the fixed-risk-appetite assumption intrinsic to most credit scenarios. 

One finds a discussion of the determination of a bank’s risk appetite in Kerma (2016). If one 

continues to apply the fixed-risk-appetite assumption, the upward drift in TTC PDs would 

vanish. This implies that businesses in their financing decisions and banks in their portfolio 

structuring would act either to maintain leverage unchanged despite incomplete cost 

passthrough or to reduce leverage by enough to offset rising vols.  

The overall implication for banks is that, to assess long-run credit/climate effects on credit 

portfolios, it is important to apply models that more clearly represent the complex risk 

 
45 In aggregate credit portfolios subject to rising volatility, the PD convexity relationship means that in long-run 
credit/climate simulations with rising vol multipliers, we also see rising expected losses. So, the concept of 
aggregate TTC Drift is similar in spirit to firm-level TTC Drift. 

 

TTC 
Grade 

2023 
Shares 

2050 Shares 

No Drift With 
Drift 

AAA 0.73% 0.73% 0.10% 

AA 1.12% 1.12% 1.09% 

A+ 3.18% 3.18% 1.97% 

A 4.20% 4.20% 3.17% 

A- 5.36% 5.36% 3.56% 

BBB+ 8.13% 8.13% 5.90% 

BBB 11.46% 11.46% 8.59% 

BBB- 12.50% 12.50% 12.18% 

BB+ 11.51% 11.51% 11.01% 

BB 10.62% 10.62% 10.93% 

BB- 7.71% 7.71% 11.26% 

B+ 8.03% 8.03% 7.95% 

B 6.04% 6.04% 8.18% 

B- 5.44% 5.44% 6.98% 

CCC+ 2.94% 2.94% 5.63% 

CCC 1.06% 1.06% 1.48% 
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(leverage and volatility) trade-offs they could face due to climate change in long-run 

scenarios that aren’t visible over short time horizons. 

3.9. Credit/Climate Scenario Results 

 
We display below results from eight stochastic credit/climate scenarios using the integrated 

approach (firm TTC Drift proxied by differential sector carbon intensity betas). The stochastic 

scenarios include six NGFS ones, a ‘No Climate’ case (the no climate scenario involves 

excluding both the carbon beta and volatility multiplier effects), and a more extreme 

scenario implying a 3 degrees Celsius GMT anomaly in 2050. For the stochastic scenarios, we 

show results in which the rise in vols imply rising TTC PDs and thus an increasing risk 

appetite and alternative results in which we assume that, due to risk management actions 

both by firms and credit portfolio managers, the aggregate TTC PDs remain on balance 

unchanged, consistent with a fixed risk appetite. 

In Figure 9 and Figure 10, for the stochastic scenarios, we run 500 simulations each quarter 

over the time horizon to 2050 for the proposed integrated approach and show climate-

change impacts on PDs, ECLs and high-percentile (90%) CLs. The climate-change impacts on 

ECLs are indicative of effects on accounting provisions. Observe, in Figure 9, we show the 

quarterly PDs start the simulation at roughly 30 bps as the example UK/European portfolio 

we use has an annual aggregate PD of about 150 bps, consistent broadly with the universe 

of publicly rated firms.  In Figure 10, the climate-change impacts on high percentile 90% CLs 

relative to ECLs are indicative of effects on capital reserves, proxied as UL-ECL. The left-hand 

panels show the simulation results without aggregate TTC drift adjustments and the right 

side shows the adjusted results. 
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Figure 9:  Portfolio Quarterly One-Quarter-Horizon PDs for Stochastic Scenarios 

Source: Moody’s CreditEdge, NGFS, Z-Risk Engine Calculations   

 

Figure 10: Portfolio Quarterly ECLs and 90th Percentile CLs for Stochastic Scenarios 

Source: Moody’s CreditEdge, NGFS, Z-Risk Engine Calculations   
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In Figures 9 and 10, for the stochastic scenarios including the No-Climate one, the portfolio-

wide PDs, ECLs, and 90th percentile CLs have a concave profile early on, rising at ever 

diminishing rates and, aside from the random disturbances due to Monte Carlo errors, 

eventually reverting to a smooth, close to flat or slowly rising trend after about seven or 

eight years. The early rise reflects the accumulation of shocks, causing the range of possible 

Z values to increase. A wider range of Z values together with the convexity of the PD 

functions in the relevant range implies higher portfolio PDs, ECLs, and tail CLs. 

 

 

Figure 11: Z Standard Deviations Across Sims for Consumer Products Firms/ UK in Selected 
Climate Scenarios46 

Source: Moody’s CreditEdge, NGFS, Z-Risk Engine Calculations   

We also see that for the climate-change scenarios, which have rising GMTs and vol 

multipliers, the Z standard deviations continue to trend up relative to the No Climate 

scenario over the entire simulation period. As shown in Figure 11, for an example combined 

industry sector/region this upward trend leads to upward drifts in aggregate TTC PDs. In the 

NGFS scenarios, this aggregate drift is smaller. In the 3-degree Celsius scenario, it is much 

larger. To largely eliminate the aggregate TTC PD drift in a climate scenario, we compute the 

series of ratios of the quarterly average PDs in the No Climate scenario to those in the 

climate scenario and enter those ratios as ‘drift multipliers’ applied to the notional, TTC PDs 

of each of the facilities. This in turn leads to a rising trend in ‘notional’ TTC DDs that, 

together with the rising vols, produces stable values for the simulated average PDs. The 

rising vols also affect the LGD and EAD results, but, since the relationships to Z are close to 

linear rather than highly convex, the effects are small. 

We call the TTC DDs derived from the TTC PDs in the portfolio file notional, since the 

associated TTC PDs will reconcile with the averages of the simulated PDs in the later periods 

with stable Z distributions only if the Z vols (and the idiosyncratic vols) remain fixed at their 

 
46 Figure 11 uses the combined, weighted-average sector (global consumer products) and region Zs (UK 
corporate). 
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historical settings. This happens in the No Climate scenario, but not in the other stochastic 

scenarios in which the Z vols drift up with GMT. In the presence of upward drifting vols, fixed 

notional TTC DDs imply fixed TTC leverage, but changing TTC DDs and the negative drift 

adjustments amount to leverage reductions.  

We’ve found in our trials that the negative aggregate drift adjustments computed as 

described earlier largely eliminate the rising-Z-vol-induced TTC drifts (see right-hand panels 

in Figure 9 and Figure 10. One sees that the climate-change-scenario PDs and ECLs are close 

to the same as the No Climate ones, but some separation remains for 90% tail credit losses. 

Thus, for a bank holding the illustrative credit portfolio, the negative aggregate drift 

adjustments reflect assumed, active dynamic risk management in the climate scenarios, 

which largely eliminates the need for rising loss provisions, but not fully the need for 

increasing climate-related capital reserves. 
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4.0.  Summary and Comparison of Current Climate Scenarios with 
the Integrated Approach 
 

This paper describes a new integrated approach for modeling climate effects on credit risk. 

This is the first approach in the CRST literature to combine ECB-type firm-level models, 

which describe the gradual intensification of some credit impacts tied to climate change, 

with credit-risk models depicting the probabilistic occurrence of systematic unexpected 

shocks, which become increasingly volatile due to rising transition and physical risk under 

climate change. We implement the ECB-type approach by introducing drift into the TTC PDs 

of different exposures and the volatility/shock approach by increasing the risk-factor 

volatilities in line with the climate change depicted in a scenario. The approach builds on 

Aguais and Forest (2023, a, b, c, d, e, and f). As with most of the existing climate models, the 

integrated approach here produces projections based on NGFS-type scenarios. We also 

include in the analysis a custom scenario we show for a scenario where GMT reaches 3 

Centigrade by 2050. 

In Table 3, for reference, we compare the key aspects of current CRST scenarios vs the 

integrated CRST approach we have proposed here. In Table 3, we see a number of ways in 

which the proposed credit/climate scenario approach reflects fully specified credit models 

and provides a more flexible and holistic framework as compared to current climate 

scenarios. 
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Table 3 Current Mainstream NGFS/ECB Scenarios vs the Integrated Approach* 

 

*Bolded characteristics of the integrated ZRE CRST approach on the right side of Table 3 are 

new contributions that extend the current NGFS/ECB approach. 

 

To illustrate the application of this novel approach, we have presented climate-change 

scenarios in which varying amounts of TTC drift occur together with either stochastic or 

deterministic scenarios of industry and region, credit-factor shocks. In all cases, the TTC 

drifts and changing risk-factor vols reflect the evolution of climate-related conditions 

depicted in an NGFS or other IAM/MEV scenario selected by the user. Since banks are 

starting to work on ECB-like, climate-change-sensitive PD models, the integrated approach 

presented here allows for projections from such models to determine the firm-level TTC-

drifts applied in fully integrated climate-change credit scenarios. 

The current implementation of our approach involves climate-scenario projections of the 

volatilities of amalgamated climate and non-climate shocks. In future implementations, we 

plan to split the amalgamated shocks into separate non-climate, climate transition-risk, and 

SCENARIO CHARACTERISTICS

CURRENT MAINSTREAM 

NGFS/ECB SCENARIO APPROACH

INTEGRATED CREDIT/CLIMATE 

SCENARIO APPROACH

(1) GENERAL SCENARIO APPROACH: DETERMINISTIC 

STOCHASTIC & DETERMINSITIC 

SCENARIO USE CASES

    - TOP-DOWN NGFS NGFS/CUSTOM

    - BOTTOM-UP FIRM SPECIFIC CLIMATE SENSITIVE CREDIT MODELS

CLIMATE SENSITIVE CREDIT MODELS 

(TTC DRIFT)

    - DEDICATED INDUSTRY SECTOR NOT INCLUDED

YES - SECTOR/REGION CREDIT 

FACTORS

(2) CREDIT RISK APPROACH:

    - EXPECTED CREDIT LOSSES CLIMATE-SENSITIVE PD MODEL CLIMATE-SENSITIVE PD/LGD/EAD

    - SYSTEMATIC CREDIT SHOCKS NOT INCLUDED

YES - Z SECTOR/REGION CREDIT-

FACTOR SIMILATIONS OR 

DETERMINISTIC ADD-FACTORS 

(3) CLIMATE RISK EFFECTS:

   - TREND EFFECTS

TREND ADJUSTMENTS FOR 

PHYSICAL/TRANSITION RISKS

TREND ADJUSTMENTS FOR 

PHYSICAL/TRANSITION RISKS

   - VOLATIITY EFFECTS NOT INCLUDED

 YES - CLIMATE RELATED VOLATILITY 

ADJUSTMENTS

(4) SCENARIO TIME STEPS: 5 YEARS OR 1 YEAR IN SOME CASES QUARTERLY FOR FACTOR MODELS

(5) CREDIT PORTFOLIO APPROACH: UNCLEAR

STATIC, DYNAMIC OR NET-ZERO 

MANAGED PORTFOLIO 

ADJUSTMENTS

(6) CREDIT/CLIMATE RISK APPETITE: NOT INCLUED

YES - USER DETERMINED 
AGGREGATE PORTFOLIO  TTC DRIFT 

ADJUSTMENTS
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climate physical-risk shocks, with only the latter two components having climate-change-

sensitive volatilities.  

For our ongoing research agenda, now that we have specified the details of our proposed 

integrated CRST framework, we turn to model calibration. Our proposed approach for 

developing preliminary, statistical calibration of physical (P) and transition (T) climate factors 

is outlined in Section 5.6. 
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5.0.  Appendix I – Detailed Model Specification for Integrated CRST 

Scenarios: Combining Firm-Specific Climate Sensitivity with Credit 

Factor Models Subject to Rising Volatility 
 

5.1.  Overview and Order of Exposition  

 
This section describes in detail, step-by-step, the ways in which we introduce climate-change 

sensitivity into Z-Risk Engine’s credit risk-factor-based models of probability of default (PD), 

loss given default (LGD), exposure at default (EAD), and credit-loss (CL). The integrated 

approach we present is the first to combine firm-level and sector-level climate effects. In 

doing this, ZRE ideally would draw on the business location and emissions data that others, 

including the ECB have applied in estimating variations in climate-change credit risks. As ZRE 

is flexible, the source of the climate-adjusted credit models could be from a bank’s own 

internal development to support regulatory requirements for CRST or from a vendor model 

that implements a similar approach. 47 Common to most credit models and research -- and in 

contrast to much of the work on climate change -- ZRE views credit risk as arising principally 

from systematic unexpected shocks and not from foreseeable trend changes in economic 

conditions.  

The order of exposition that we develop in this section is as follows: 

First, we discuss: 

• ZRE’s Existing Climate-Sensitive Model Has Industry and Region Vol Sensitivities Firm-

level Credit Model Climate Adjustments – applied as firm-specific TTC Drift, and, 

• The extended, integrated approach that Introduces firm-level climate sensitivities. 

 

We present the mathematical details for the integrated CRST approach on a step-by-step 

basis which follow these six steps: 

 

1. Step One:  Derive Systematic Credit-Risk Factors 

2. Step Two:  Estimate Models for the Stochastic Evolution of Systematic Factors 

3. Step Three:  Construct Industry-Region Z Factors 

4. Step Four: Add Climate-Sensitivity to the Z Projections 

5. Step 5:  Run Climate-Sensitive Z Sims 

6. Step Six:  Calculate the PD, LGD, EAD, and Credit Loss Sims for Each of the 

Facilities in a Portfolio 

 

 
47 For banks’ current efforts in developing preliminary, climate scenario capabilities to support evolving CRST 
regulatory deliverables, we highlight some key tasks we suggest for bank’s 2024 agenda, see, Aguais (2024). 



MARCH 2024                                                                                                                                       

44 

ZRE Research Paper, With Support From CGFI: An Integrated Credit/Climate Scenario  
Approach Combining Firm-Level Climate Sensitivity with Climate Volatility Add-Ons 
Copyright ©2024 Aguais and Associates Ltd. All rights reserved. www.z-riskengine.com 

Section 5.6 completes the section by outlining an approach for developing and applying 

more refined physical and transition climate risk factors derived directly from equity 

markets. 

As discussed, ZRE provides two different scenario development use cases, firstly for 

deterministic ‘add-factor’ shocks (as in Aguais and Forest (2023, e) and is discussed briefly in 

Section 7, Appendix III).  

The second and primary scenario use case develops stochastic, simulation-based CRST 

scenarios that combine firm-level climate adjustments with Z credit factor simulations 

subject to rising volatility. This is the core approach derived in detail in this section.  

5.2.  ZRE’s Existing Climate-Sensitive Model Has Industry and Region Vol 

Sensitivities  
 

ZRE’s climate-change credit model with industry and region volatility (vol) sensitivities: 

• starts with an overall average upward trend in average, credit-risk-factor innovation 

vols based on an assumed relationship to a relevant climate metric, currently the 

global mean temperatures (GMTs) in an NGFS or custom climate scenario,  

• distributes this overall average, vol trend to industry and region groupings based on 

industry and region ‘betas,’ and  

• assigns each business obligor in each industry-region segment the same industry-

region vol trend as other obligors in that segment. 

 

Under a climate-change scenario, the rising vols lead to a wider range of Monte Carlo 

simulations (sims) for the credit-cycle factors (Zs) central to the ZRE models. The more 

volatile Z sims lead to more volatile PD, LGD, EAD, and credit-loss (CLs) sims. And the losses 

in high-percentile (stress) sims are greater than in the absence of climate change.  

This ZRE current climate industry-region approach does not allow for the possibility of 

differences arising from the varying locations and GHG emissions of obligors within each 

segment or for rising volatility impacts. This motivates the extended approach, consistent 

with evolving regulatory requirements focused on firm-level climate impacts. 

5.3.  Extended, Integrated Approach Introduces Firm-Level Climate Sensitivities 

 

In the extended model, we add these more detailed sensitivities by: 

• introducing drifts in the TTC PDs of each firm as implied by a TTC-PD model with 

inputs affected by the transition and physical risks of a firm, and possibly additionally.  

• distributing the global average vol trend directly to individual firms based mainly on 

their locations, which imply physical risk, and their GHG emissions, which relate to 

transition risk. 
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Under this more detailed approach, the TTC PD drifts could come from bank-developed PD 

models that are integrated with ZRE. As implied by demand/supply analysis, we expect the 

drifts from such models to be rising for firms with above average climate-change exposures 

and decreasing for firms with below average exposures.  

The firm-specific vol multiplier extension would involve applying obligor-level beta 

coefficients to the global average vol multipliers. These obligor betas would have an average 

value of one. Obligors with greater (lesser) than average exposures to climate-change 

(physical plus transition) credit risk would have betas above (below) one. For firms without 

good emissions and location data, we would continue to assign the industry-region betas. 

 

5.4.  Initial Calibration Will Apply Bank-Developed Climate-Sensitive PD Models 

 
This leaves open the task of calibrating the climate-change sensitivities, especially the firm-

specific PD model inputs required as inputs in the integrated approach. Our ongoing 

research could determine these key features through empirical estimation perhaps by 

regressing observed vols on physical- and transition-risk scores.  

For the global average vol multiplier, we will initially continue to use the same hypothetical 

formula found in our existing models. For the obligor betas, we will determine them based 

on the relative default-distance (DD = --1(PD)) changes estimated by an existing climate-

sensitive, cost-based model. Based on our proposed approach, for each climate scenario, we 

will: 

• covert PDs to DDs by applying the negative of the inverse normal function to PDs, 

• calculate, for each company and each scenario time, a delta DD as the difference 

between the DD under the climate scenario and the DD without climate effects, with 

this latter DD perhaps best approximated by the DD in the last historical period 

before the start of the scenario, 

• form a global average of the company delta DDs at each scenario time,  

• derive, for each company for each scenario time-step, a company beta coefficient as 

the company delta DD divided by the corresponding global average, and 

• compute industry averages of those betas to be used as proxy beta values for 

companies outside of the estimation sample. 

 

Thus, suppose that, in a climate scenario, a cost-based model projects a fall in DD in 2050 

relative to its current (e.g., Dec 2022) value of 0.15 for company A, 0.07 for company B, and 

0.10 for the global average company. In this scenario, company A would receive a beta 

coefficient of 1.5 for 2050 and company B a beta of 0.7.  If in the year 2035 in that scenario, 

the fall in DD was 0.11 for company A and 0.7 for the global average company, company A’s 

beta for 2035 in that scenario would be 1.57 (= 0.11/0.7). 
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5.5.  Mathematical Description of the Current and Integrated ZRE Approaches 
 

We review first some basic features of credit factor models such as ZRE. Then we describe 

the industry-region-based approach to estimating credit impacts of climate change. After 

that we present the model extensions leading to a firm-based approach. 

5.5.1.  Step One: Derive Systematic Credit-Risk Factors 

ZRE’s models involve industry and region, credit-risk factors that derive from a 

comprehensive set of listed-company point-in-time (PIT) PDs.48 One can acquire such PDs 

from a handful of source models including Moody’s CreditEdge. For selected industries and 

regional groupings, ZRE calculates credit-risk, default-distance-gap (DDGAP) and Z indices 

and selected variances using the formulas below. 

 𝐷𝐷𝑆,𝑡 = −Φ−1 (med
𝑖∈𝑆(𝑡)

𝑃𝐷𝑖,𝑡)

𝐷𝐷𝐺𝐴𝑃𝑆,𝑡 = 𝐷𝐷𝑆,𝑡 − avg
𝑡
𝐷𝐷𝑆,𝑡

𝐷𝐷𝐺𝐴𝑃𝑆,𝑡 = 𝑑𝑒𝑡𝑟𝑒𝑛𝑑(𝐷𝐷𝐺𝐴𝑃𝑆,𝑡)

𝑣𝑆
𝐴 = var

𝑡
(𝐷𝐷𝐺𝐴𝑃𝑆,𝑡+4 −𝐷𝐷𝐺𝐴𝑃𝑆,𝑡)

𝑣𝑆
𝑄 = var

𝑡
(𝐷𝐷𝐺𝐴𝑃𝑆,𝑡+1 −𝐷𝐷𝐺𝐴𝑃𝑆,𝑡)

𝑍𝑆,𝑡 = 𝐷𝐷𝐺𝐴𝑃𝑆,𝑡 √𝑣𝑆
𝐴⁄

 (1) 

 

Here 𝐷𝐷𝑆,𝑡 denotes the median Probit-model default distance (DD) inferred from the PDs of 

companies classified within sector S (= industry I or region R) at time t, Φ−1the inverse 

normal probability-distribution function, med the median function, 𝐷𝐷𝐺𝐴𝑃𝑆,𝑡 the gap 

between the median DD for sector S at time t and the historical average median DD for 

sector S, avg the average function, 𝑑𝑒𝑡𝑟𝑒𝑛𝑑 the linear detrend function, 𝑣𝑆
𝐴 the variance of 

annual historical changes in the DDGAPs of sector S, var the variance function, 𝑣𝑆
𝑄 the 

variance of quarterly changes in the DDGAPs of sector S, and 𝑍𝑆,𝑡 the value of the Z index for 

sector S at time t. 

5.5.2. Step Two: Estimate Models for the Stochastic Evolution of Systematic Factors 

ZRE runs stochastic simulations of quarterly Z paths using mean-reversion momentum (MM) 

models as specified below. 

 Δ𝑍𝑆,𝑡+1 = 𝑚𝑆,1𝑍𝑆,𝑡 +𝑚𝑆,2Δ𝑍𝑆,𝑡 + 𝜖𝑆,𝑡+1 (2) 

 

 
48 Over the years we have used all the key vendor, market-based, public-firm default models to calibrate ZRE 
Zs, including our long-time work with Moody’s CreditEdge EDFs and, as well, Kamakura and the University of 
Singapore Credit Research Initiative (CRI) ‘PD’ model. See, CRI, (2022). When we ran the RBS Basel II Credit 
Modelling Team, we also calibrated ZRE to an internal Bloomberg public-firm default model history. 
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In (2),  Δ𝑍𝑆,𝑡 represents the one-quarter change in the Z for sector S at time t+1, 𝑚𝑆,1the 

mean-reversion coefficient (<0) for sector S, 𝑚𝑆,2the momentum coefficient (>0) for sector S, 

and 𝜖𝑆,𝑡+1the Z innovation for sector S at time t+1.  ZRE estimates these MM models for 

each specified industry and region based on the past monthly time series of Z values (from 

1990 to date for CreditEdge).  

The MM (or AR2) model formulation extends the legacy approach, which assumes that 

credit factors evolve as random walks. We add mean reversion due to the observation that 

recoveries follow recessions. We see this in the historical record of credit losses. We include 

momentum due to the observation that recessions persist for more than a brief period. The 

mean-reversion and momentum coefficients are statistically significant in the estimates for 

almost all industries and regions. The AR2 model explains the historical record much better 

than current legacy approaches that exclude credit cycles. 

5.5.3. Step Three:  Construct Industry-Region Factors  

Before entering them as cycle variables in facility-level PD, LGD, and EAD models, ZRE 

combines the industry and region Zs into industry-region ones. Due to data limitations 

making the tabulation of industries within regions untenable, ZRE forms the composite Z 

indices as weighted averages of the respective industry and region Zs. The CreditMetrics 

model, Gupton, Finger and Bhatia (1997), first introduced this use of industry-region 

composite indices as proxied for industry-within-region ones.  

 
𝐷𝐷𝐺𝐴𝑃𝐼,𝑅,𝑡 = 𝑤𝐼√𝑣𝐼

𝐴𝑍𝐼,𝑡 + (1 − 𝑤𝐼)√𝑣𝑅
𝐴𝑍𝑅,𝑡

𝑣𝐼,𝑅
𝐴 = 𝑤𝐼

2𝑣𝐼
𝐴 + (1 − 𝑤𝐼)

2𝑣𝑅
𝐴 + 2𝑤𝐼(1 − 𝑤𝐼)𝜚𝐼,𝑅

𝐴 √𝑣𝐼
𝐴𝑣𝑅

𝐴

𝑣𝐼,𝑅
𝑄 = 𝑤𝐼

2𝑣𝐼
𝑄 + (1 − 𝑤𝐼)

2𝑣𝑅
𝑄 + 2𝑤𝐼(1 − 𝑤𝐼)𝜚𝐼,𝑅

𝑄 √𝑣𝐼
𝑄𝑣𝑅

𝑄

𝑍𝐼,𝑅,𝑡 = 𝐷𝐷𝐺𝐴𝑃𝐼,𝑅,𝑡/√𝑣𝐼,𝑅
𝐴

 (3) 

 

In (3), 𝐷𝐷𝐺𝐴𝑃𝐼,𝑅,𝑡 represents the DDGAP for the industry-I, region-R composite at time t, 

𝑤𝐼 the weight applied to the industry-I DDGAP (and (1 − 𝑤𝐼) applied to the region-R 

DDGAP), 𝑣𝐼
𝐴 the variance of annual changes in DDGAPs for industry I, 𝑣𝑅

𝐴the variance of 

annual changes in DDGAPs for region R, 𝑣𝐼,𝑅
𝐴 the variance of annual changes in DDGAPs for 

the industry-I, region-R composite, 𝜚𝐼,𝑅
𝐴 the correlation coefficient between annual changes in 

industry-I and region-R Zs, 𝑣𝐼
𝑄 the  variance of quarterly changes in DDGAPs for industry I, 

𝑣𝑅
𝑄the variance of quarterly changes in DDGAPs for region R, 𝑣𝐼,𝑅

𝑄 the variance of quarterly 

changes in DDGAPs for the industry I, region R composite, 𝜚𝐼,𝑅
𝑄 the correlation coefficient 

between quarterly changes in industry-I and region-R Zs and 𝑍𝐼,𝑅,𝑡the value of the Z index for 

the industry-I, region-R composite at time t. 

ZRE derives the weights 𝑤𝐼 from optimizations finding the best, least-squares fits to the 

historical quarterly DD changes of listed firms within each industry.  
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In the above formulations, the MM models for Z sims include no effects of climate change. 

ZRE applies these models in determining IFRS 9 or CECL provisions and in running both 

regulatory stress tests and ‘No Climate’ credit-loss sims. We compare the credit losses in 

climate sims with the No Climate ones in isolating the effects of climate change under 

various scenarios. Below we discuss the ways in which we introduce climate-change into 

ZRE. 

5.5.4. Step Four: Add Climate-Sensitivity to the Z Projections 

  

In modeling effects of climate change, ZRE current approach starts by deriving, for a climate 

scenario, a time series of prospective, global average vol multipliers (VMs). We think of 

those multipliers as related to a climate-change physical-and-transition risk metric. 

Currently, we express the prospective series of overall average vol multipliers in a climate 

scenario as a function of the associated global mean temperature (GMT) path. For now, we 

are using the hypothetical relationship below: 

 𝑉𝑀𝐶,𝑡 = (1 + (𝐺𝑀𝑇𝐶,𝑡 − 𝐺𝑀𝑇𝐵𝑎𝑠𝑒)/14.5)
4 (4) 

   

In (4), 𝑉𝑀𝐶,𝑡 denotes the vol multiplier series for the climate scenario C, 𝐺𝑀𝑇𝐶,𝑡 the global 

mean Celsius temperature at time t in climate scenario C, and 𝐺𝑀𝑇𝐵𝑎𝑠𝑒 a smoothed GMT 

value observed in the most recent, historical year without discernable climate-change 

effects on credit.  The fourth power implies that, due to threshold effects, future 

temperature rises have progressively greater effects on credit volatility, including potential 

climate-related tipping points. We see below (Figure 12) the GMT paths and the associated 

global vol multipliers for each of the NGFS scenarios and one other that implies a three-

degree GMT anomaly in 2050. 

 

Figure 12: GMT Anomalies and Global Vol Multipliers in Selected Scenarios 

Source:  Moody’s CreditEdge, NGFS, Z-Risk Engine calculations 

ZRE next determines, for each industry and region grouping, a beta coefficient reflecting the 

emissions and locations of an average firm within the industry or region compared with the 
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global average of all firms.49 The betas amplify (diminish) the global-average vol multiplier in 

determining the vol multipliers for industries and regions with above-average (below-

average) climate-risk exposures. Thus: 

 𝛽𝐼,𝑡 = 𝑐(𝐿𝐼,𝑡, 𝐸𝐼,𝑡)/𝑐(𝐿𝑡, 𝐸𝑡)

𝛽𝑅,𝑡 = 𝑐(𝐿𝑅,𝑡, 𝐸𝑅,𝑡)/𝑐(𝐿𝑡, 𝐸𝑡)
 (5) 

 

In (5), I denotes an industry, R a region, t the date, c a function determining the climate-risk 

exposure as related to locations and emissions, 𝐿𝐼,𝑡 the locations risk score for industry I at 

time t, 𝐸𝐼,𝑡 the emissions risk score for industry I at time t, 𝐿𝑅,𝑡 the locations risk score for 

region R at time t, 𝐸𝑅,𝑡 the emissions risk score for region R at time t, and  𝐿𝑡, 𝐸𝑡 the global 

average values of sectoral locations and emissions scores at time t. Thus, L denotes a 

physical-risk score related to locations of firms within the industry or region and E a 

transition-risk score related to the GHG emissions attributable to those firms.  

Observe that the beta coefficients have time indexes to allow for differential effects of 

mitigation actions over time. For example, browner industries with above unitary betas 

initially could act particularly aggressively in mitigating climate risk and therefore have betas 

that regress towards unity. 

The climate-exposure functions referenced above are subjects of ongoing research and so 

are unavailable at present. Thus, our current projections draw on betas that reflect our 

judgments of the relative climate exposures of various industries but are broadly consistent 

with the climate risk literature.  

As an initial calibration approach, one might derive the climate betas for individual firms and 

then, by averaging, for industries and regions from the PD effects that other models derive 

from emissions and location data and projections of mitigation actions. Note that this would 

mean using those outside models both for determining TTC drift as well as industry and 

region volatility betas. As one calibration approach in this case, one could estimate the beta 

coefficients as follows: 

 𝐷𝐷𝑒,𝑡,𝐶 = −Φ−1(𝑃𝐷𝑒,𝑡,𝐶)

𝐷𝐷𝑒,𝑡,𝑁𝐶 = −Φ−1(𝑃𝐷𝑒,𝑡,𝑁𝐶)

𝑑𝐷𝐷𝑒,𝑡,𝐶 = (𝐷𝐷𝑒,𝑡,𝐶 − 𝐷𝐷𝑒,𝑡,𝑁𝐶)

𝛽𝑒,𝑡,𝐶 = 𝑑𝐷𝐷𝑒,𝑡,𝐶/ 𝑎𝑣𝑔
𝑒
(𝑑𝐷𝐷𝑒,𝑡,𝐶)

𝛽𝐼,𝑡,𝐶 = avg
𝑒∈𝐼
𝛽𝑒,𝑡,𝐶

𝛽𝑅,𝑡,𝐶 = avg
𝑒∈𝑅

𝛽𝑒,𝑡,𝐶

 (6) 

 

In the above, 𝑃𝐷𝑒,𝑡,𝐶  denotes a PD for business entity e at time t under scenario C as 

obtained from another (cost-based) model, C a particular climate scenario, and NC the 

 
49 As explained above, the climate betas we use for now for industry sector and region Zs are proxies until we 
fully integrate firm-level credit/climate models. 
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scenario in which climate change has no effect on credit risk. Note that the betas for each 

industry and region arise by averaging the betas for the firms classified within each industry 

and region. 

Now, for the climate scenario C, ZRE computes, for each industry I and region R, a VM path 

by multiplying the global average VM path by the applicable beta coefficient.  

 𝑉𝑀𝐼,𝑡 = 𝛽𝐼,𝑡𝑉𝑀𝐶,𝑡
𝑉𝑀𝑅,𝑡 = 𝛽𝑅,𝑡𝑉𝑀𝐶,𝑡

 (7) 

 

5.5.5.  Step 5:  Run Climate-Sensitive Z Sims 

ZRE next runs, for each industry I and region R, quarterly Z sims by: 

• obtaining series of MM-model residuals for a random selection of past quarters, 

• applying the relevant VMs to the randomly selected residuals, and 

• entering the rescaled residuals into the MM model and solving iteratively for the 

related, Zs. 

 

We express this as formulas below. 

 𝑞𝑠,𝑡+1 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑍 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑠)

𝜖𝐼,𝑠,𝑡+1 = 𝑉𝑀𝐼,𝑡+1𝜖𝐼(𝑞𝑠,𝑡+1)

Δ𝑍𝐼,𝑠,𝑡+1 = 𝑚𝐼,1𝑍𝐼,𝑠,𝑡 +𝑚𝐼,2Δ𝑍𝐼,𝑠,𝑡 + 𝜖𝐼,𝑠,𝑡+1
𝑍𝐼,𝑠,𝑡+1 = Δ𝑍𝐼,𝑠,𝑡+1 + 𝑍𝐼,𝑠,𝑡
𝜖𝑅,𝑠,𝑡+1 = 𝑉𝑀𝑅,𝑡+1𝜖𝑅(𝑞𝑠,𝑡+1)

Δ𝑍𝑅,𝑠,𝑡+1 = 𝑚𝑅,1𝑍𝑅,𝑠,𝑡 +𝑚𝑅,2Δ𝑍𝑅,𝑠,𝑡 + 𝜖𝑅,𝑠,𝑡+1
𝑍𝑅,𝑠,𝑡+1 = Δ𝑍𝑅,𝑠,𝑡+1 + 𝑍𝑅,𝑠,𝑡

 (8) 

 

Here 𝑞𝑠,𝑡+1denotes a randomly selected historical quarter to be used in drawing MM-model 

residuals for sim s at time t+1, 𝜖𝐼,𝑠,𝑡+1 a Z innovation for industry I in sim s at time t+1, 

𝑉𝑀𝐼,𝑡+1 vol multiplier for industry I at time t+1, 𝜖𝐼,𝑠,ℎ the MM-model residual for industry I in 

sim s in past quarter q, Δ𝑍𝐼,𝑠,𝑡+1 the one-quarter change in the value of the Z index for 

industry I in sim s at time t+1, 𝑚𝐼,1the mean-reversion coefficient for industry I, 𝑚𝐼,2 the 

momentum coefficient for industry I, 𝑍𝐼,𝑠,𝑡 the value of the Z index for industry I in sim s at 

time t, 𝜖𝑅,𝑠,𝑡+1 the Z innovation for region R in sim s at time t+1, 𝑉𝑀𝑅,𝑡+1 the vol multiplier in 

for region R at time t+1, 𝜖𝑅,𝑠,ℎ the MM-model residual for region R in sim s in past quarter q, 

Δ𝑍𝑅,𝑠,𝑡+1 the one-quarter change in the value of the Z index for region R in sim s at time t+1, 

𝑚𝑅,1 the mean-reversion coefficient for region R, 𝑚𝑅,2 the momentum coefficient for region 

R and 𝑍𝑅,𝑠,𝑡 the value of the Z index for region R in sim s at time t.  The random sequence of 

historical quarters used in choosing innovations in a sim are the same for each industry and 

region. This ensures that the sims embody cross-sector correlations. 

Next, ZRE applies formulas (3) in combining the industry and region Z sims for each 

permissible industry-region pair to obtain the industry-region-composite Z (‘ZIR’) sims.  
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These ZIR sims provide the credit factor inputs into the PD, LGD, and EAD models that 

produce the facility-level loss sims. As needed for these facility sims, ZRE imports, from 

databases and files, the credit-facility descriptive data and the PD-, LGD-, and EAD-model 

parameters (see Table 4 and Table 5). 

Table 4: Excerpt from Sample Portfolio File 

 

Source:  Author’s assumptions, used to develop the illustrative credit portfolio 

FAC # Portfolio

TTC 

Grade TTC PD Product

Current 

Maturity Limit EU TTC LGD TTC CCF FCF Region Industry

1 SME BB 0.72% Term 6.00 3.0 100.00% 30% 100% 100% GERMANY MEDIA

2 SME BBB- 0.27% Contingent 1.00 5.0 10.00% 40% 70% 25% FRANCE BUSINESS AND CONSUMER SERVICES

3 SME A 0.05% Term 5.50 3.0 100.00% 30% 100% 100% FRANCE BUSINESS AND CONSUMER SERVICES

4 SME A- 0.06% Term 0.75 7.0 100.00% 50% 100% 100% GERMANY BUSINESS AND CONSUMER SERVICES

5 LC BBB- 0.27% Revolving 2.00 50.0 50.00% 10% 70% 100% SPAIN CONSUMER PRODUCTS

6 SME BBB 0.17% Term 5.25 2.0 100.00% 30% 100% 100% ITALY BUSINESS AND CONSUMER SERVICES

7 SME B 4.04% Term 3.00 3.0 100.00% 30% 100% 100% ITALY CONSTRUCTION

8 SME BB+ 0.51% Revolving 0.75 7.0 50.00% 20% 20% 100% FRANCE FINANCE, INSURANCE AND REAL ESTATE

9 LC BB- 1.49% Backstop 0.50 50.0 0.00% 30% 70% 100% SPAIN UTILITIES

10 SME B+ 2.42% Term 1.00 10.0 100.00% 30% 100% 100% GERMANY FINANCE, INSURANCE AND REAL ESTATE

11 LC BBB- 0.27% Revolving 6.50 70.0 20.00% 40% 20% 100% UK MOTOR VEHICLES AND PARTS

12 SME BB+ 0.51% Term 4.75 7.0 100.00% 40% 100% 100% FRANCE HOTELS AND LEISURE

13 SME BBB- 0.27% Term 1.75 10.0 100.00% 70% 100% 100% SPAIN BUSINESS AND CONSUMER SERVICES

14 SME CCC 22.63% Term 1.25 5.0 100.00% 20% 100% 100% FRANCE FINANCE, INSURANCE AND REAL ESTATE

15 SME BB 0.72% Term 5.75 7.0 100.00% 20% 100% 100% GERMANY RETAIL AND WHOLESALE TRADE

16 SME B+ 2.42% Revolving 2.00 2.0 50.00% 40% 30% 100% GERMANY AGRICULTURE

17 SME CCC+ 11.03% Term 2.00 3.0 100.00% 20% 100% 100% GERMANY CONSTRUCTION

18 LC BB 0.72% Backstop 0.75 40.0 0.00% 20% 70% 100% ITALY RETAIL AND WHOLESALE TRADE

19 SME B- 6.61% Contingent 1.00 7.0 20.00% 30% 20% 25% ITALY AGRICULTURE

20 LC BBB- 0.27% Backstop 0.50 70.0 0.00% 30% 45% 100% GERMANY HOTELS AND LEISURE

21 LC BB 0.72% Revolving 0.75 70.0 10.00% 30% 20% 100% SPAIN TECHNOLOGY

22 LC BB 0.72% Revolving 1.00 40.0 80.00% 30% 45% 100% SPAIN BUSINESS AND CONSUMER SERVICES

23 SME BBB 0.17% Term 3.50 5.0 100.00% 40% 100% 100% GERMANY MEDICAL

24 SME B 4.04% Term 5.75 5.0 100.00% 20% 100% 100% ITALY AGRICULTURE

25 SME BB 0.72% Revolving 4.75 5.0 50.00% 50% 30% 100% SPAIN BASIC INDUSTRIES

26 SME BBB 0.17% Term 3.50 5.0 100.00% 30% 100% 100% GERMANY HOTELS AND LEISURE

27 SME CCC+ 11.03% Contingent 1.50 5.0 50.00% 20% 70% 25% UK BUSINESS AND CONSUMER SERVICES

28 SME BBB+ 0.12% Term 0.25 3.0 100.00% 60% 100% 100% UK TRANSPORTATION

29 SME B- 6.61% Term 6.25 5.0 100.00% 60% 100% 100% SPAIN MEDICAL

30 SME BB- 1.49% Revolving 3.75 5.0 60.00% 30% 20% 100% UK CHEMICALS AND PLASTIC PRODUCTS

31 SME A- 0.06% Term 1.00 3.0 100.00% 30% 100% 100% FRANCE MACHINERY AND EQUIPMENT

32 LC BBB- 0.27% Revolving 4.25 30.0 0.00% 30% 45% 100% NORDIC STATES MEDICAL

33 LC BBB- 0.27% Term 1.50 50.0 100.00% 30% 100% 100% BENELUX HOTELS AND LEISURE

34 LC BBB 0.17% Revolving 0.75 50.0 50.00% 60% 20% 100% GERMANY MEDICAL

35 SME BBB 0.17% Contingent 0.75 3.0 80.00% 40% 20% 25% FRANCE RETAIL AND WHOLESALE TRADE

36 SME B- 6.61% Revolving 2.75 10.0 0.00% 30% 30% 100% UK BUSINESS AND CONSUMER SERVICES

37 SME A 0.05% Term 0.75 5.0 100.00% 20% 100% 100% SPAIN BUSINESS AND CONSUMER SERVICES

38 SME B 4.04% Revolving 0.50 7.0 20.00% 40% 70% 100% GERMANY FINANCE, INSURANCE AND REAL ESTATE

39 SME B+ 2.42% Revolving 0.75 5.0 50.00% 30% 20% 100% GERMANY OIL AND GAS

40 LC A+ 0.04% Revolving 1.50 50.0 60.00% 40% 20% 100% ITALY BUSINESS AND CONSUMER SERVICES
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Table 5: Excerpt from Sample Parameters File* 

 

Source:  Moody’s CreditEdge, NGFS, Z-Risk Engine Calculations 

*This Table is an output file from ZRE that shows a standard set of Region Z segments (both industry 

sectors and regions are customized for each bank’s credit portfolio characteristics). In the portfolio 

analysis we present for the UK/Europe credit portfolio, we use a smaller set of Region Zs as shown for 

the portfolio segmentations in Section 6 - Appendix II. 

 

5.5.6.  Step Six:  Calculate the PD, LGD, EAD, and Credit Loss Sims for Each of the Facilities 

in a Portfolio 

In calculating the PDs for each facility f in each sim s for each sim quarter ending at time t, 

ZRE applies a Probit model. 

Sector Z_0 dZ_0 weight Z_Norm V_A V_Q m1 m2 sigma

AEROSPACE AND DEFENSE -0.01 0.35 0.38 -0.32 0.04 0.01 -0.10 0.24 0.42

AGRICULTURE -0.16 0.22 0.29 -0.37 0.03 0.01 -0.08 0.13 0.45

BANKING 1.16 0.39 0.31 -0.27 0.01 0.00 -0.06 0.30 0.39

BASIC INDUSTRIES 1.01 0.04 0.32 -0.40 0.03 0.00 -0.06 0.24 0.42

BUSINESS AND CONSUMER SERVICES -0.25 0.11 0.43 -0.41 0.03 0.00 -0.06 0.21 0.41

CHEMICALS AND PLASTIC PRODUCTS -0.41 0.00 0.36 -0.30 0.02 0.00 -0.09 0.22 0.43

CONSTRUCTION 0.80 0.26 0.28 -0.28 0.03 0.01 -0.10 0.28 0.40

CONSUMER PRODUCTS 0.24 0.32 0.44 -0.35 0.02 0.00 -0.08 0.29 0.39

FINANCE, INSURANCE AND REAL ESTATE 0.07 0.32 0.35 -0.13 0.00 0.00 -0.08 0.35 0.39

HOTELS AND LEISURE -0.10 0.32 0.47 -0.44 0.03 0.00 -0.05 0.24 0.40

MACHINERY AND EQUIPMENT 0.70 0.17 0.30 -0.31 0.03 0.01 -0.09 0.25 0.43

MEDIA 0.04 -0.10 0.36 -0.62 0.04 0.01 -0.06 0.28 0.37

MEDICAL -0.79 0.03 0.34 -0.52 0.03 0.01 -0.06 0.00 0.47

METALS 1.26 0.26 0.27 -0.34 0.04 0.01 -0.09 0.24 0.43

MINING 0.21 0.04 0.72 -0.37 0.04 0.01 -0.08 0.24 0.40

MOTOR VEHICLES AND PARTS 0.02 0.37 0.23 -0.29 0.04 0.01 -0.11 0.31 0.40

OIL AND GAS 1.04 0.44 0.59 -0.48 0.04 0.01 -0.11 0.26 0.41

RETAIL AND WHOLESALE TRADE 0.03 0.26 0.36 -0.33 0.02 0.00 -0.08 0.25 0.42

TECHNOLOGY 0.21 0.03 0.46 -0.50 0.04 0.01 -0.06 0.17 0.44

TRANSPORTATION 0.42 0.07 0.40 -0.26 0.03 0.01 -0.11 0.28 0.40

UTILITIES 0.97 0.22 0.48 -0.54 0.02 0.00 -0.07 0.19 0.42

ASIA 0.60 0.11 -0.34 0.03 0.01 -0.10 0.28 0.40

ASIA FI 0.59 0.23 -0.26 0.02 0.00 -0.08 0.23 0.42

BENELUX -0.30 0.33 -0.54 0.04 0.01 -0.06 0.25 0.40

BENELUX FI -0.34 0.15 -0.18 0.01 0.00 -0.10 0.15 0.44

FRANCE -0.19 -0.20 -0.43 0.04 0.01 -0.06 0.21 0.42

FRANCE FI -0.88 0.18 -0.13 0.00 0.00 -0.09 0.10 0.46

GERMANY -0.18 -0.22 -0.83 0.04 0.01 -0.03 0.33 0.36

GERMANY FI 0.18 0.09 -0.29 0.01 0.00 -0.05 0.24 0.40

ITALY -0.30 0.05 -0.29 0.06 0.01 -0.13 0.28 0.40

ITALY FI 1.16 0.50 -0.22 0.01 0.00 -0.11 0.14 0.47

LATIN AMERICA -0.06 0.13 -0.74 0.05 0.01 -0.06 0.02 0.50

LATIN AMERICA FI 0.43 0.15 -0.47 0.02 0.01 -0.09 0.02 0.61

MIDDLE EAST & AFRICA 0.86 0.37 -0.60 0.03 0.01 -0.06 0.03 0.51

MIDDLE EAST & AFRICA FI 1.43 0.33 -0.31 0.01 0.00 -0.06 0.02 0.48

NORDIC STATES -0.33 -0.21 -0.41 0.05 0.01 -0.07 0.28 0.39

NORDIC STATES FI -0.51 0.10 -0.23 0.01 0.00 -0.05 0.15 0.42

NORTH AMERICA 0.03 0.20 -0.34 0.03 0.01 -0.09 0.22 0.42

NORTH AMERICA FI 0.86 0.23 -0.18 0.01 0.00 -0.07 0.30 0.40

PACIFIC 0.74 0.02 -0.72 0.03 0.01 -0.08 0.09 0.44

PACIFIC FI 0.06 -0.04 -0.22 0.01 0.00 -0.08 0.11 0.44

REST OF EUROPE 0.42 0.55 -0.43 0.04 0.01 -0.07 0.27 0.40

REST OF EUROPE FI 0.77 0.66 -0.23 0.01 0.00 -0.06 0.07 0.48

SPAIN -0.44 0.01 -0.45 0.06 0.01 -0.08 0.14 0.44

SPAIN FI 1.12 0.54 -0.28 0.01 0.00 -0.06 0.00 0.47

UK -0.21 -0.17 -0.46 0.03 0.01 -0.06 0.30 0.38

UK FI -0.62 0.51 -0.19 0.00 0.00 -0.06 0.20 0.43



MARCH 2024                                                                                                                                       

53 

ZRE Research Paper, With Support From CGFI: An Integrated Credit/Climate Scenario  
Approach Combining Firm-Level Climate Sensitivity with Climate Volatility Add-Ons 
Copyright ©2024 Aguais and Associates Ltd. All rights reserved. www.z-riskengine.com 

 𝐼 = 𝐼(𝑓)
𝑅 = 𝑅(𝑓)

𝐷𝐷𝑄,𝑓
𝑇𝑇𝐶 = −Φ−1(𝑃𝐷𝑓

𝑇𝑇𝐶 4⁄ )

𝜌𝐼,𝑅
𝐴 = 𝑣𝐼𝑅

𝐴

𝜌𝐼,𝑅
𝑄 =

𝑣𝐼𝑅
𝑄

𝑣𝐼𝑅
𝑄 + (1 − 𝑣𝐼𝑅

𝐴 )/4

𝑃𝐷𝑓,𝑠,𝑡 = Φ

(

  
 
−(𝐷𝐷𝑄,𝑓

𝑇𝑇𝐶 +√𝜌𝐼,𝑅
𝐴 (𝑍𝐼,𝑅,𝑠,𝑡 − 𝑍𝑛,𝐼,𝑅))

√1−𝜌𝐼,𝑅
𝑄

)

  
 

 (9) 

 

Here I = I(f) and R = R(f) indicate that ZRE sets I to the primary industry and R to the primary 

region of the principal obligor of facility f. 𝐷𝐷𝑄,𝑓
𝑇𝑇𝐶  denotes the through-the-cycle (TTC) one-

quarter DD of the principal obligor of facility f, 𝑃𝐷𝑓
𝑇𝑇𝐶the one-year-horizon TTC PD of the 

principal obligor of facility f, 𝜌𝐼,𝑅
𝐴 the systematic risk proportion of total annual DD variance, 

𝜌𝐼,𝑅
𝑄 the systematic risk proportion of total quarterly DD variance, 𝑃𝐷𝑓,𝑠,𝑡 the one-quarter 

PD of the principal obligor of facility f in sim s at time t, and 𝑍𝑛,𝐼,𝑅 the Z value that yields Z-

conditional PDs the same as the TTC PDs for obligors within the industry-I, region-R 

composite sector.  The Z norm values are negative, due to the convexity of the PD function in 

the relevant range. That convexity implies that the TTC PD, which is the average PD across all 

states of the cycle, exceeds the PD at the average (Z=0) state of the cycle. 

Next ZRE calculates the LGDs in each sim using the formulas in (10), which apply a Tobit 

model in producing the expected value of LGD conditional on the simulated Z value.  

Following a common convention for reducing the computation burden, the sims include 

conditional expected values and not every possible LGD realization.  

 𝑚0.𝑓 = 𝑚0(𝐿𝐺𝐷𝑓
𝑇𝑇𝐶)

𝑚𝑓,𝑠,𝑡 = 𝑚0,𝑓 +𝑚𝑍𝑍𝐼,𝑅,𝑠,𝑡

𝜎𝑓,𝑠,𝑡 = 𝑒𝑥𝑝(s0 + 𝑠𝑍𝑍𝐼,𝑅,𝑠,𝑡)

𝐸𝐿𝐺𝐷𝑓,𝑠,𝑡 = Φ(−
1 −𝑚𝑓,𝑠,𝑡

𝜎𝑓,𝑠,𝑡
) +𝑚𝑓,𝑡 (Φ(

1 −𝑚𝑓,𝑠,𝑡

𝜎𝑓,𝑠,𝑡
) − Φ(−

𝑚𝑓,𝑠,𝑡

𝜎𝑓,𝑠,𝑡
))

+𝑠𝑓,𝑡 (ϕ(−
𝑚𝑓,𝑠,𝑡

𝜎𝑓,𝑠,𝑡
) − ϕ(

1 −𝑚𝑓,𝑠,𝑡

𝜎𝑓,𝑠,𝑡
))

 (10) 

 

Here 𝑚0.𝑓 denotes the constant term in the formula for the Tobit central tendency 

parameter, 𝐿𝐺𝐷𝑓
𝑇𝑇𝐶  the TTC LGD of the facility f, 𝑚𝑍 the coefficient applied to Z in the 

central-tendency formula, s0 the constant term in the formula for the spread parameter, and 

𝑠𝑍 the coefficient applied to the Z in that formula. 𝑚𝑓,𝑠,𝑡represents the mean of the normal 

distribution in the Tobit model in sim s at time t and 𝜎𝑓,𝑠,𝑡 the related standard deviation, Φ 
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the normal distribution function, and ϕ the normal density function. The parameters come 

from past empirical research, although a bank may choses to revise them based on a its own 

experience. Note that, with a simple recalibration, the lookup for the central-tendency 

constant term may take the downturn LGD rather than the TTC one as its argument. 

ZRE calculates the EADs in each sim using the formulas below, which apply a Probit model 

for the credit-conversion factor (CCF). 

 𝑐0.𝑓 = Φ−1(𝐶𝐶𝐹𝑓
𝑇𝑇𝐶)

𝐶𝐶𝐹𝑓,𝑠,𝑡 = Φ(𝑐0,𝑓 + 𝑐𝑍𝑍𝐼,𝑅,𝑠,𝑡)

𝐸𝐸𝐴𝐷𝑓,𝑠,𝑡 = (𝐸𝑈𝑓 + (1 − 𝐸𝑈𝑓)𝐶𝐶𝐹𝑓,𝑠,𝑡)𝐹𝐶𝐹𝑓𝐿𝑓,𝑡

 (11) 

 

Here 𝑐0.𝑓 denotes the constant term in the CCF formula, 𝐶𝐶𝐹𝑓
𝑇𝑇𝐶  the facility’s TTC CCF from 

the portfolio file, 𝑐𝑍 the coefficient applied to Z in the CCF formula, 𝐸𝐸𝐴𝐷𝑓,𝑠,𝑡 the conditional 

expected value of EAD for facility f in sim s at time t, 𝐸𝑈𝑓the expected utilization of the 

facility f, 𝐹𝐶𝐹𝑓 the funding conversion factor for facility f, and 𝐿𝑓,𝑡 the limit for facility f at 

time t.  The FCF has a value of one for cash facilities and typically below one for contingent 

(e.g., documentary trade credit, bond discount) facilities. 

The CL sims then arise from an identify. 

 𝐶𝐿𝑓,𝑠,𝑡 = 𝑃𝐷𝑓,𝑠,𝑡 ∙ 𝐸𝐿𝐺𝐷𝑓,𝑠,𝑡 ∙ 𝐸𝐸𝐴𝐷𝑓,𝑠,𝑡 (12) 

To obtain a reasonable representation of the credit-loss distributions, one would run many 

sims, perhaps more than a thousand. For a climate scenario, C, one gets the loss sims for a 

particular portfolio, P, of facilities by summing the loss sims for the facilities within the 

portfolio. P could represent the total portfolio, an industry or regional subset, all large-

corporate facilities, all SMEs, or other identifiable segments.  

 𝐶𝐿𝐶,𝑃,𝑠,𝑡 =∑𝐶𝐿𝐶,𝑓,𝑠,𝑡
𝑓𝜖𝑃

 (13) 

 

From these results, one can compute various statistics including the expected value, 

standard deviation, and various quantiles.  

 𝐸𝐶𝐿𝐶,𝑃,,𝑡 = avg
𝑠
𝐶𝐿𝐶,𝑃,𝑠,𝑡

𝐶𝐿𝐶,𝑃,𝑡
𝑁 = 𝑁𝑃

𝑠
𝐶𝐿𝐶,𝑃,𝑠,𝑡

 (14) 

 

Here  𝐸𝐶𝐿𝐶,𝑃,,𝑡 denotes the expected credit loss in climate scenario C for portfolio P at time 

t, 𝐶𝐿𝐶,𝑃,𝑡
𝑁 the Nth percentile loss in climate scenario C for portfolio P at time t, and NP the Nth 

percentile function. 

To get the climate-scenarios impacts, one merely subtracts the same statistics from the No 

Climate scenario. 
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 𝐸𝐶𝐿𝐷𝐶,𝑃,,𝑡 = 𝐸𝐶𝐿𝐶,𝑃,,𝑡 − 𝐸𝐶𝐿𝑁𝐶,𝑃,,𝑡
𝐶𝐿𝐷𝐶,𝑃,𝑡

𝑁 = 𝐶𝐿𝐶,𝑃,𝑡
𝑁 − 𝐶𝐿𝑁𝐶,𝑃,𝑡

𝑁  (15) 

 

Here the appended D indicates the difference between the statistic’s value in the C scenario 

and its value in the NC scenario. 

5.5.7.  Model Extensions: Add Company-Level Climate-Vol Sensitivity  
 

Instead of using averages of obligor betas in producing vol multiplier for each industry and 

region as in formulas (7), ZRE instead could use the individual obligor betas in the formula 

(16) below in determining the vol multipliers applicable to each legal entity e with the beta 

coefficients 𝛽𝑒,𝑡. 

 𝑉𝑀𝑒,𝑡 = 𝛽𝑒,𝑡 ∙ 𝑉𝑀𝐶,𝑡 (16) 

   

Next, for each entity e, ZRE runs sims for the entity’s primary industry 𝐼 = 𝐼(𝑒) and primary 

region 𝑅 = 𝑅(𝑒). 

 𝑞𝑠,𝑡+1 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑍 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑠)

𝜖𝐼,𝑠,𝑡+1 = 𝑉𝑀𝑒,𝑡+1𝜖𝐼(𝑞𝑠,𝑡+1)

Δ𝑍𝐼,𝑠,𝑡+1 = 𝑚𝐼,1𝑍𝐼,𝑠,𝑡 +𝑚𝐼,2Δ𝑍𝐼,𝑠,𝑡 + 𝜖𝐼,𝑠,𝑡+1
𝑍𝐼,𝑠,𝑡+1 = Δ𝑍𝐼,𝑠,𝑡+1 + 𝑍𝐼,𝑠,𝑡
𝜖𝑅,𝑠,𝑡+1 = 𝑉𝑀𝑒,𝑡+1𝜖𝑅(𝑞𝑠,𝑡+1)

Δ𝑍𝑅,𝑠,𝑡+1 = 𝑚𝑅,1𝑍𝑅,𝑠,𝑡 +𝑚𝑅,2Δ𝑍𝑅,𝑠,𝑡 + 𝜖𝑅,𝑠,𝑡+1
𝑍𝑅,𝑠,𝑡+1 = Δ𝑍𝑅,𝑠,𝑡+1 + 𝑍𝑅,𝑠,𝑡

 (17) 

 

Observe that the formulas (17) differ from the earlier ones at (8) only in the application of 

entity vol multipliers in place of industry and region ones.   Also, ZRE performs these sims for 

each entity rather than for each industry and region. This entails a heavier computational 

burden. Suppose a credit portfolio includes 10,000 legal entities, each classified within one 

of twenty-five industries and one of ten regions. Suppose, further, that we choose to run 

1,000 Monte Carlo sims extending 115 quarters and that we have company specific climate-

risk scores for 2,000 obligors and must use industry-based proxies for the remaining 8,000 

(mostly SME companies). Under the existing industry-region vol-multiplier approach, this 

would entail 35,000 (= 25 x 1,000 + 10 x 1,000) Monte Carlo sims extending 115 quarters. 

Under the obligor approach, this would entail 2,035,000 million (2,000 x 2 x 1,000+ 35,000) 

sims extending 115 quarters. 

ZRE now applies formulas (3) in producing the industry-region-composite sims for each 

entity. To emphasize the dependency on the legal entity of the facility, we will use the 

notation 𝑍𝑒,𝑠,𝑡  to denote the value of the industry-region ZIR factor for entity e in sim s at 

time t. These sims involve entity e’s vol multipliers applied in running sims for entity e’s 

primary industry and region. 
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 𝐼 = 𝐼(𝑒(𝑓))
𝑅 = 𝑅(𝑒(𝑓))

𝐷𝐷𝑄,𝑓
𝑇𝑇𝐶 = −Φ−1(𝑃𝐷𝑓

𝑇𝑇𝐶 4⁄ )

𝜌𝑓
𝐴 = 𝑣𝐼𝑅

𝐴

𝜌𝑓
𝑄

=
𝑣𝐼(𝑒),𝑅(𝑒)
𝑄

𝑣𝐼𝑅
𝑄
+ (1 − 𝑣𝐼𝑅

𝐴 )/4

𝑃𝐷𝑓,𝑠,𝑡 = Φ

(

  
 
−(𝐷𝐷𝑄,𝑓

𝑇𝑇𝐶 +√𝜌𝑓
𝐴(𝑍𝑒(𝑓),𝑠,𝑡 − 𝑍𝑛,𝑒(𝑓)))

√1−𝜌𝑓
𝑄

)

  
 

 (18) 

 

Similarly, the LGD and EAD formulas apply the entity ZIR factors. 

 𝑚0.𝑓 = 𝑚0(𝐿𝐺𝐷𝑓
𝑇𝑇𝐶)

𝑚𝑓,𝑠,𝑡 = 𝑚0,𝑓 +𝑚𝑍𝑍𝑒(𝑓),𝑠,𝑡

𝜎𝑓,𝑠,𝑡 = 𝑒𝑥𝑝(s0 + 𝑠𝑍𝑍𝑒(𝑓),𝑠,𝑡)

𝐸𝐿𝐺𝐷𝑓,𝑠,𝑡 = Φ(−
1 −𝑚𝑓,𝑠,𝑡

𝜎𝑓,𝑠,𝑡
) +𝑚𝑓,𝑡 (Φ(

1 −𝑚𝑓,𝑠,𝑡

𝜎𝑓,𝑠,𝑡
) −Φ(−

𝑚𝑓,𝑠,𝑡

𝜎𝑓,𝑠,𝑡
))

+𝑠𝑓,𝑡 (ϕ(−
𝑚𝑓,𝑠,𝑡

𝜎𝑓,𝑠,𝑡
) − ϕ(

1 −𝑚𝑓,𝑠,𝑡

𝜎𝑓,𝑠,𝑡
))

𝑐0.𝑓 = Φ−1(𝐶𝐶𝐹𝑓
𝑇𝑇𝐶)

𝐶𝐶𝐹𝑓,𝑠,𝑡 = Φ(𝑐0,𝑓 + 𝑐𝑍𝑍𝑒,𝑠,𝑡)

𝐸𝐸𝐴𝐷𝑓,𝑠,𝑡 = (𝐸𝑈𝑓 + (1 − 𝐸𝑈𝑓)𝐶𝐶𝐹𝑓,𝑠,𝑡)𝐹𝐶𝐹𝑓𝐿𝑓,𝑡

 (19) 

 

The remaining calculations are the same as in the industry- and region-based approach (see 

formulas (12) to (15)). As mentioned earlier, some cost-based models of climate-

sensitive TTC PDs produce estimates that show the PDs drifting up or down over time 

for selected businesses. The climate sensitive ZRE model can introduce these time 

series of TTC PDs into its scenarios by means of a time series of portfolio files. In the 

trials presented thus far, the TTC PDs of the different representative obligors have 

been constant and so there was only one portfolio-attribute file, not a time series. 

However, in the integrated model, we would include TTC drifts as indicated in a series 

of portfolio files.  

Be aware, however, that upward drifts in risk-factor volatilities already produce 

upward drifts in aggregate TTC PDs. This occurs due to the PD function being convex 

in the relevant range. Since the cost-based external-model estimates typically exclude 

effects of risk-factor volatility, one might question whether combining the TTC drifts 

from two separate sources yields a reliable result. Indeed, one might also question 

whether firms on their own or as compelled by creditors would take risk-reducing 
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actions such as deleveraging so as to mitigate or even negate aggregate TTC drift. We 

plan to explore this question as part of our ongoing research agenda. 

 

5.6.  Model Calibration Research Agenda: Developing Climate Physical and 

Transition Risk Factors 

 

As highlighted earlier one could develop transition (T) and physical (P) climate-change risk 

factors from structured portfolios of market-value-related indicators. Many of the existing 

studies in this vein apply this idea using equity prices. Here, we summarize one potential 

approach for overall model calibration, to create climate risk-factors relevant to credit, we 

propose building them based on Merton-model, DDs (= minus normal inverse of PIT PDs) of 

listed firms. We have started preliminary research on this suggested approach using climate 

data from a leading climate data vendor. 

We could create the credit-risk T factor as the median or average DD of companies with high 

emissions minus the median or average DD of companies with low emissions. Analogously, 

we could create the P factor as the median or average DD of companies with high physical 

risk based on location minus the median or average DD of companies with low physical risk. 

After developing the past values of the factors, we could introduce them into ZRE by: 

• running regressions of industry and region Zs on T and P Zs, 

• using those regression results to split Zs into climate and non-climate components, 

where the climate component is the value implied by the T and P factors and the 

non-climate one the residual, 

• developing relationships between NGFS scenario data and T and P Zs, 

• applying those relationships in running NGFS climate stress tests, 

• creating separate climate and non-climate MM models with the climate innovations 

possibly expanding in variance over time as climate transition and physical risks grow 

(and possibly reverting at some point), and, 

• using those MM models in Monte Carlo sims for estimating IFRS 9 ECLs. 

 

Observe that this proposal for further research extends the currently implemented volatility-

multiplier approach. The existing approach applies Z factors that reflect the combined 

influence of climate and non-climate shocks. And in projections, we assume that the 

volatility of such shocks increases with climate change because of the increasing volatility of 

the climate component. Under the proposed approach, we could split the Z factors into 

climate and non-climate components and further split the climate component into T and P 

factors. We then assume that the non-climate vols remain constant and the T and P factor 

vols increase over time due to climate change. Thus, the proposed approach represents an 

elaboration of the existing one. 
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6.0. Appendix II: UK/European Credit Portfolio Used in the 

Illustrative Credit/Climate Scenario Analysis 
 

The illustrative UK/European credit portfolio characteristics in the credit/climate scenarios 

presented here are summarized in the following tables. The portfolio includes loans to both 

large-corporate and SME firms in a variety of industries and countries and with varying 

credit grades, see tables below.   

 

 

 

Industry Composition (limits) 
 

AEROSPACE AND DEFENSE 2.73% 
AGRICULTURE 3.00% 
BANKING 5.22% 
BASIC INDUSTRIES 5.45% 
BUSINESS AND CONSUMER SERVICES 13.03% 
CHEMICALS AND PLASTIC PRODUCTS 1.92% 
CONSTRUCTION 6.46% 
CONSUMER PRODUCTS 3.54% 
FINANCE, INSURANCE & REAL ESTATE 6.02% 
HOTELS AND LEISURE 4.76% 
MACHINERY AND EQUIPMENT 4.25% 
MEDIA 4.93% 
MEDICAL 4.45% 
METALS 1.41% 
MINING 5.21% 
MOTOR VEHICLES AND PARTS 3.56% 
OIL AND GAS 5.04% 
RETAIL AND WHOLESALE TRADE 6.52% 
TECHNOLOGY 4.85% 
TRANSPORTATION 4.29% 
UTILITIES 3.34% 
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7.0. Appendix III: Deterministic Credit/Climate Scenario Use Case 

Add-Factor Approach 
 

ZRE also allows for the introduction of discrete (deterministic) innovation shocks determined 

external to the ZRE models. As examples of applying a deterministic shock scenario use case, 

we apply shocks in our Z models that are similar to add-factors used in macro-economic 

forecasting. In Aguais and Forest (2023, e) we developed a short-run climate scenario to 

2030 by applying a set of industry sector deterministic shocks as Z ‘add-factors’ driven by the 

Real World Climate Scenarios climate ‘Meltdown’ narrative scenario, see, RWCS (2022) and 

the University of Exeter (2023). The Z credit factor shocks in this short-run scenario were 

derived from the published RWCS Meltdown climate narrative and were scaled to the 

aggregate credit impacts seen in the Great Recession. The RWCS Meltdown scenario was 

applied to assess however, a different sector mix impact relative to 2007/08. 

These shocks may occur in addition to the stochastic ones obtained through the vol-

multiplier approach or in isolation as the only shocks affecting the credit-risk factors.  

The deterministic Meltdown scenario involves a series of discrete innovations in selected 

quarters, with no innovations (other than zero) in other quarters (Figure 13). These averages 

reflect shocks of varying magnitudes within sectors (Table 6) where we compare the actual 

shocks observed by industry Z sector in 2007/08 vs the shocks we derive for the meltdown 

scenario. 

 

Figure 13:  Averages of Sector Shocks in Meltdown Scenario 

Source: Moody’s EDFs, Z-Risk Engine Calculations and RWCS Meltdown Scenario 
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Table 6: Cumulative Meltdown Shocks vs Great Recession by Sector 

 

                 Source: Moody’s CreditEdge, RWCS and Z-Risk Engine Calculations 

 

We have also run scenarios in which additional shocks occur in 2027:Q3, the quarter after 

the meltdown (see Figures 14 and 15). for the case of an overall average shock with 

magnitude of 0.5).  

 

 

 

Industry Sector Great Recession Meltdown'

2007:Q4-2008:Q4 2026:Q1-2027:Q1
AEROSPACE AND DEFENSE -3.42 -1.26

AGRICULTURE -3.68 -2.76

BANKING -3.80 -4.14

BASIC INDUSTRIES -4.11 -3.51

BUSINESS AND CONSUMER SERVICES -3.67 -2.76

CHEMICALS AND PLASTIC PRODUCTS -3.14 -2.76

CONSTRUCTION -3.88 -4.77

CONSUMER PRODUCTS -3.29 -2.64

FINANCE, INSURANCE AND REAL ESTATE -3.63 -2.76

HOTELS AND LEISURE -3.83 -4.89

MACHINERY AND EQUIPMENT -3.17 -3.01

MEDIA -3.72 -3.01

MEDICAL -3.21 -2.01

METALS -3.60 -3.01

MINING -3.41 -3.01

MOTOR VEHICLES AND PARTS -2.31 -6.02

OIL AND GAS -3.31 -5.65

RETAIL AND WHOLESALE TRADE -2.37 -3.51

TECHNOLOGY -3.46 -2.01

TRANSPORTATION -2.91 -4.27

UTILITIES -3.46 -4.14
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Figure 14:  Portfolio Quarterly CLs and One-Quarter-Horizon PDs for Meltdown and No 
Climate Scenarios 

Source: Moody’s CreditEdge, RWCS, Z-Risk Engine Calculations 

 

 

Figure 15:  Portfolio Quarterly CLs and One-Quarter-Horizon PDs for Meltdown plus Shock 
0.5 and No Climate Scenarios 

Source: Moody’s CreditEdge, RWCS, Z-Risk Engine Calculations   
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8.0. Appendix IV: An Example of a Dynamic Net-Zero Climate 

Strategy Scenario  
 

In climate scenarios, the ECB asks banks to project the portfolio-composition shifts that 

would predictably occur under each climate scenario over a long (30-year) horizon. With a 

few exceptions, this will prove challenging for the corporate and commercial portfolios. One 

could, for example, expect relocations away from coastal areas especially those prone to 

cyclonic storms; but the optimal response could involve hardening business establishments 

rather than relocating them. Regarding industry composition, the changes in the main may 

prove modest, since most shifts from brown to green technologies will likely occur within 

industries rather than across them.  

We see this in auto production, in which a few new entrants have joined the substantial 

number of legacy firms in producing electric vehicles and all are classified in the motor 

vehicle industry. In a few cases, however, we can anticipate shifts. For example, oil and gas 

production seems destined to decline in share, despite efforts by petrol businesses to slow 

this trend through the development of carbon capture and sequestration (CCS) 

technologies. And solar and wind sources of electric power will surely gain and nuclear may 

gain in share as fossil fuel sources decline. However, these composition shifts would largely 

occur within an amalgamated utility industry. 

As another way of managing long-run capital requirements that could be impacted by future 

climate change, banks could shift the industry and thus the brown versus green composition 

of its corporate/commercial credit portfolio. As an illustration, we ran the NGFS Net Zero 

2050 scenario with a portfolio in which the industry composition remains fixed at its starting 

2023 mix and with an alternative portfolio in which the shares of some brown industries fall 

over 2023-2050 (Table 7). These scenarios we present in Table 7 are outlined to 

demonstrate ways to use the integrated CRST approach to test different long-run climate 

scenario options to compare alternative scenario effects. 
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Table 7 Industry Composition of the Managed Portfolio at the Start and End of the 
Scenario 

Source: Moody’s CreditEdge, Z-Risk Engine Calculations   

We show results as affected by two suggested risk management actions over time: drift 

adjustments, which represent risk control achieved by compelling obligors to maintain their 

TTC ratings (by deleveraging); and industry-composition shifts (performed by the portfolio 

manager). As expected, the TTC drift adjustments and the shifts in portfolio composition 

both reduced the 90th percentile unexpected losses (ULs) (Figure 16). Further, the reductions 

attributable to each of the two actions were about equal. However, in the Net Zero 2050 

scenario, which involves comparatively successful climate-change-mitigation, the 

magnitudes of the UL reductions are modest, in combination amounting to about five 

percent. The actions taken reduce only climate-related risks. Since these actions do not 

address the major share of UL that traces to non-climate shocks, the UL in total reduces by 

only a minor amount in this illustrative example.  

 

Sector Beta 

Limit 
Shares 
2023 

Shifted 
Shares 
2050 

Change 
2023 to 
2050 

AEROSPACE & DEFENSE 0.76 2.73% 2.73% 0.00% 
AGRICULTURE 1.03 3.00% 3.00% 0.00% 
BANKING 0.76 5.22% 5.22% 0.00% 
BASIC INDUSTRIES 0.89 5.45% 5.45% 0.00% 
BUS & CONSUMER SERVICES 0.76 13.03% 14.25% 1.22% 
CHEMICALS AND PLASTIC PRODUCTS 0.89 1.92% 1.71% -0.21% 
CONSTRUCTION  1.16 6.46% 6.62% 0.16% 
CONSUMER PRODUCTS 0.89 3.54% 4.44% 0.90% 
FIN, INSURANCE & REAL ESTATE 0.76 6.02% 5.86% -0.16% 
HOTELS & LEISURE 1.03 4.76% 5.17% 0.41% 
MACHINERY & EQUIPMENT 0.76 4.25% 4.00% -0.25% 
MEDIA 0.76 4.93% 5.46% 0.53% 
MEDICAL 0.76 4.45% 5.85% 1.40% 
METALS 1.42 1.41% 0.88% -0.53% 
MINING 1.42 5.21% 4.22% -1.00% 
MOTOR VEHICLES & PARTS 1.16 3.56% 3.32% -0.24% 
OIL & GAS 1.82 5.04% 1.57% -3.47% 
RETAIL & WHOLESALE TRADE 0.63 6.52% 6.62% 0.10% 
TECHNOLOGY 0.76 4.85% 5.89% 1.04% 
TRANSPORTATION 1.16 4.29% 4.00% -0.29% 
UTILITIES 1.42 3.34% 3.72% 0.38% 
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Figure 16: Net Zero 2050 Unexpected Losses in 2050:Q4 Under Various Risk-Management 
Assumptions 

Source: Moody’s CreditEdge, Z-Risk Engine Calculations   
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