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Abstract 
Many banks use GDP and other, national-income-and-product-account (NIPA), macroeconomic variables 
(MEVs) as the main, risk drivers in the wholesale/commercial credit, scenario models that they use in 
estimating losses under baseline and stress conditions.  But, if limited to such drivers, those models would 
understate differences between baseline and stress losses.  To obtain accurate estimates of cyclical 
variations in credit losses, banks must include fully PIT, market-value-related, risk factors as drivers.  
Otherwise, the results would understate intertemporal variations related to the credit cycle.  

We gauge the underestimation of loss variations by comparing, for a hypothetical portfolio representative 
of US, commercial-and-industrial (C&I) loans, CCAR-2019, credit-loss scenarios driven alternatively by GDP 
only and by mark-to-market (MtM) asset values, BBB spreads, and GDP.  We refer to the first model as 
GDP-only and the second as point-in-time (PIT).   

Under benign credit conditions in 2018 just before the start of the scenarios, the hypothetical portfolio 
experiences an annualized, charge-off rate of about 17 bps.  In the CCAR, severely-adverse (SA) scenario, 
with GDP as the only risk driver, the projected, charge-off rate in 2020Q2-2021Q1 reaches 88 bps, about 
52 bps over the values in the same quarters in the CCAR, baseline scenario.  In the SA scenario, with MtM 
asset-values, credit spreads, and GDP as drivers, the charge-off rate climbs in 2020 to 230 bps, about 197 
bps over the baseline.  The PIT model produces a maximum, annual charge-off rate under SA conditions 
of about 3x the TTC rate and 7x baseline.  The ratio of 3x TTC matches the highest value of this ratio in the 
historical data on US bank, C&I, charge-off rates.  The GDP-only model under SA conditions produces a 
maximum ratio of only 1.14x TTC and 2.4x baseline.  Thus, the PIT model estimates loss variations quite 
accurately and the GDP-only model underestimates them by a wide margin. 

The GDP-only and PIT models are identical other than in the choice of MEV drivers.  The trials therefore 
isolate the effects of including versus excluding market-value, MEV drivers.   Both models use bridge 
formulas in translating MEV scenarios into a larger number of industry-region, Z-index scenarios.  Both 
models enter the related, industry-region, Z scenarios into the PD, LGD, and EAD models for each facility 
in the portfolio and thereby produce the credit-loss scenarios.  In both cases, the approaches downstream 
from the MEV scenarios have PIT components.  Thus, the results show that, without market-value, MEV 
drivers, scenario models that otherwise would be PIT are no longer so.  Such non-PIT models 
underestimate the cyclical variability of losses.   

Other deficiencies such as hybrid (less than fully PIT) Z inputs into the PD, LGD, and EAD models would 
produce non-PIT estimates that also understate variations in credit losses.1  We’ll address this concern in 
a forthcoming ZRE Working Paper. 

 
1 To our knowledge, based on conversations with credit-risk modelers and developers globally and on our experience 
as reviewers of models at several institutions, only Barclays, the Royal Bank of Scotland (RBS), and DBS bank in 
Singapore have PIT credit models.  At Barclays and RBS, we ran the modeling teams that implemented a framework 
that produced both fully PIT and fully TTC credit measures.  This PIT-TTC Ratings Framework was signed-off under 
each bank’s Basel II Waiver.  DBS has developed its PIT models for wholesale/commercial credit by implementing 
and licensing Z-Risk Engine (ZRE) jointly with AAA.  In the Fall of 2017, DBS adopted ZRE as its strategic IFRS 9 solution 
for wholesale and commercial portfolios, see joint DBS-AAA Z-Risk Engine Press Release, October 9th, 2017.  In all 
three of these cases, the PIT credit-cycle indices (CCIs) integral to the PIT PDs, LGDs, and EADs arise either from ZRE 
or methods equivalent to those implemented by ZRE.  Most other institutions have models involving close-to-TTC 
inputs.  The credit projections under such approaches understate cyclical variations due not only to the absence of 
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Regulators and accounting firms have advised that, in running stress tests and in determining provisions 
under CECL or IFRS 9, banks need to use PIT models.  Otherwise, as described above, the results will be 
prone to large errors.  To our knowledge, few institutions today include, in the wholesale/commercial 
credit models that they use in provisioning and stress testing, the market-value-related drivers that are 
necessary for those models to be close to PIT.  Also, few banks include fully PIT, Z indices as inputs into 
PD, LGD, and EAD models.  Thus, to obtain accurate, PIT estimates of losses, banks urgently need to 
enhance their wholesale/commercial credit models. 2 

Outline of Paper 
We start below by explaining the difference between PIT and TTC models.  We then describe the models 
used here in producing loss scenarios alternatively with GDP as the only MEV driver and with MtM asset 
values, credit spreads, and GDP as MEV drivers.   We begin with a general overview of the modeling 
framework.  We then offer more detailed descriptions of the major modeling components.  Following this, 
we display the baseline and SA paths for the selected, MEV drivers and the hypothetical portfolio used in 
the trials.   Last, we present the baseline and SA loss estimates from the alternative models.   

PIT versus TTC Models 
PIT models track cyclical variations in credit risk.  Thus, a PIT default model, solved retrospectively drawing 
on past values of systematic-credit factors, would, for a large portfolio, produce average PDs that 
approximate closely the time series of the portfolio’s realized, default rates (DRs).  PIT loss-given-default 
(LGD) and exposure-at-default (EAD) models would, in such retrospective trials, track closely the portfolio-
wide, realized LGDs and EADs in each time period.  In combination, such PIT models would produce 
estimates of expected-credit-losses (ECLs) that approximate closely the time series of losses of a large 
portfolio (Figure 1). 

TTC models exclude cyclical variations in credit risk.  A TTC default model, solved retrospectively, would, 
for a large portfolio with unchanging composition in terms of long-run-average, default risk, produce a 
flat, average-PD series that exhibited none of the cyclical rises and falls of the portfolio’s realized DRs.  A 
TTC, LGD model, solved retrospectively on a large portfolio of facilities that were, on balance, unchanging 
in terms of collateral coverage, seniority, other structural features, and recovery processes, would 
produce a flat, average-LGD series. 

PIT, TTC, and hybrid (intermediate to PIT and TTC) models differ depending on the cyclicality of their 
inputs.  PIT models involve PIT inputs that move up and down fully in step with the credit cycle.  TTC 
models involve TTC inputs inert to credit-cyclical fluctuations.  Hybrid models involve hybrid inputs that 
move with the cycle, but less than enough to represent the totality of cyclicality.   

 
market-value, MEV drivers, as examined in this paper, but also to the use of near-TTC models for PDs, LGDs, and 
EADs.   
2 A bank may accomplish this PIT enhancement quickly by implementing the ZRE application as a monthly batch 
process drawing on one or more of the listed-company, default models offered by several vendors to create a set of 
industry and region CCIs (credit cycle indices).  Under ZRE, a bank may retain the customized industry-region 
segmentation that it considers most appropriate for its portfolio.  Using ZRE, a bank may also retain its existing credit 
models, modified, for provisioning and stress testing, by implementing the monthly ZRE batch process along with 
existing credit models. Thus, ZRE sits on top of a bank’s existing models and so requires no time-consuming 
redevelopment. 
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The mathematical formulas that transform inputs into outputs in those three cases often are the same.  
Thus, in a Probit PD model, one applies the standard-normal, cumulative-probability-distribution function 
(CDF) in transforming inputs into PDs.  The ‘PIT-ness’ of the inputs determines the PIT-ness of the PDs.   
Thus, the PDs would be PIT, TTC, or hybrid, respectively, depending on whether the inputs were 100% PIT, 
0% PIT, or somewhere intermediate to 0% and 100%. 

 

Figure 1:  PIT and TTC (1990-to-date average) Annualized Loss Rates for US Bank C&I Loans. Source:  
Board of Governors of the Federal Reserve System.  

https://www.federalreserve.gov/releases/chargeoff/chgallsa.htm 

If a bank were to change the long-run-average, default-risk composition of its lending portfolio, then, 
related to this change in customer business strategy, high-quality PIT and TTC default models would show 
the same change in average PD.  Thus, both models would perform equally well in recognizing non-cyclical 
changes and so every PIT model has a TTC one within it dealing with non-cyclical variations. 

Models Used Here in Generating CCAR Scenarios 
We describe below the GDP-only and PIT models that we use in running CCAR-2019, loss scenarios.  Both 
start with known or assumed paths of one or more, MEVs.  The models convert the MEVs into trendless, 
credit-risk indices, denoted MEV Zs.  Those indices enter into a bridge (or expansion) model, which, on 
the basis of MEV-Z paths, estimates industry and region, Z paths.  The industry and region Zs derive from 
industry and region, median PDs produced by a listed-company, PIT, default model. 3 Next, the models 
combine industry and region, Z paths for each permissible industry-region pair and obtain industry-region, 
Z paths. Those industry-region Zs, entered into PD, LGD, and EAD models for facilities within each, 
industry-region sector, generate the PD, expected LGD (ELGD), and expected EAD (EEAD) paths that in 
turn determine the ECL time series implied by each, CCAR scenario.  See below a schematic representation 
of the modeling framework (Figure 2). 

 
3 The ZRE team has worked with all of the listed-company, default models available from vendors.  In this case study 
we’re using the CreditEdge model from Moody’s Analytics. 
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Figure 2:  High-Level Schematic Representation of Loss Scenario Models in Z-Risk Engine 

Rather than entering transformed MEVs directly into PD, LGD and EAD models, the approach here includes 
the intermediate step of bridging to industry and region Zs.  This occurs for a couple of reasons.  To start, 
the industry and region Zs offer information on differences among sectors in initial, credit conditions.  
These initial differences help explain variations among sectors in the future evolution of credit conditions.  
Further, past research shows that, if added to wholesale/commercial credit PD, LGD, and EAD models, the 
industry-region Zs dramatically improve model performance in tracking cyclical variations in PDs, LGDs, 
and EADs.  Absent this bridge step, the projected changes in credit conditions in all industries within the 
US would be the same.  Such unduly uniform projections would be inferior to those that account for the 
predictable differences that trace to variations in initial, industry and region Zs. 

In each case, conditional on a MEV scenario, the projections amount to a sequence of one-quarter 
estimates of the defaults and losses experienced by a portfolio with fixed, TTC attributes.  The estimates 
of defaulted EADs and ECLs enter into perpetual inventories of recovery exposures and identified 
impairments.  Then, under an assumed, exit rate, set to 25% quarterly in these trials, the identified 
impairments transition into charge-offs.   

Assuming an unchanging risk appetite, the static-TTC-attribute assumption offers a tractable way of 
projecting a bank’s “good book” of credit facilities.  Under this regulatory convention, the facilities in the 
portfolio have maturities, limits, utilization rates, and TTC values of PDs, LGDs, and EADs that remain the 
same in every quarter during a scenario.  Fluctuations over time in quarterly ECLs trace entirely to varying 
credit-cycle conditions as gauged by industry and region Zs. 

Since each loss scenario amounts to a sequence of single-step estimates, the models in this paper draw 
only on the default column of the conditional, quarterly, transition matrix (TM) in Figure 2 above.  In a 
multi-step problem, such as in estimating provisions under CECL or IFRS 9, one would use the entire TM. 

Industry and Region Zs 
The industry and region Zs (Aguais et. al. 2007) derive from PDs produced by a PIT, default model covering 
listed companies.  In this paper, we draw on the Moody’s CreditEdge model.  Other vendors of such 
models include Kamakura, S&P, Bloomberg, and the Credit Research Initiative of the National University 
of Singapore.  
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We derive the industry and region, Z indices by 

• calculating, for each of the selected industries and regions, the time series of median PDs, 
• applying, to each median-PD series, the inverse-normal function and then multiplying by negative 

one, thereby obtaining a series of median, default distance (DD) measures,  
• subtracting the 1990-to-date average value of median DDs, thereby deriving a default-distance 

gap (DDGAP), cyclical indicator, and 
• dividing by the standard deviation of either annual (annual scaling) or quarterly (quarterly scaling) 

changes in the DDGAPs, thereby producing Z indices. 

In some cases, this process yields Zs that exhibit a trend, evidently reflecting accreting changes in the TTC 
composition of the underlying, listed-company sample.  In such cases, we estimate a linear time trend and 
subtract it from the Zs derived as described above.   This yields an entirely cyclical, trendless series.   

In running quarterly PD scenarios using conventional formulas, which assume that one-period-changes in 
credit factors have unitary variance, we apply the quarterly-scaled, Z indices.  For all other purposes, we 
use the annual-scaled versions.  Such scaling differences are unimportant for LGD and EAD estimation.  
LGDs and EADs occur at a point in time (the default time) and vary depending on the Z value at that time.  
Defaults in contrast occur over a time interval and vary depending on the Z change during that interval. 

The inverse-normal transformation assumes that the underlying PD model is Probit.  If instead the PD 
model were logit, we’d start with median, log-odds ratios.  If the model were exponential, we’d work with 
natural logarithms of the PDs. 

GDP-Only Model’s MEV Transformation and Bridge Formula 
This model has one MEV driver – GDP.4  The model transforms GDP into a credit-cycle, Z index, denoted 
ZG.  This involves  

• forming a first-order-autoregressive (AR(1)) moving average of past, quarterly, GDP values,  
• taking natural logarithms of the quarterly ratios of GDP to the moving-average of past GDPs,  
• subtracting the 1990-to-date, average value of the logarithmic ratios, thereby producing a cycle-

gap measure, and 
• dividing by the standard deviation of annual changes in the cycle-gap measure. 

Past, ZG values show moderate, cyclical declines in 1990-91 and 2001-02 and a large one in 2007-08 
(Figure 3). 

 

 

 
4 Most banks have scenario models drawing on multiple MEVs.  However, in some cases, the several MEVs represent 
GDPs in different countries or other MEVs highly correlated with GDP   Since the portfolio in this case involves only 
obligors operating principally in the US, the US-GDP case represents the simplest instance of scenarios driven either 
by country-specific GDPs or by MEVs highly correlated with GDP.   
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Figure 3:  US ZG Series for 1990Q1 to 2018Q4.  Authors calculations using GDP data from the Bureau of 
Economic Analysis of the Department of Commerce obtained at https://fred.stlouisfed.org/series/GDP 

Dividing by a moving average approximates the effect of forming the ratio of GDP to non-financial-
corporate liabilities.  In this process, GDP represents a business cash flow or profit indicator.  Thus, the 
ratio to a moving average provides a proxy measure of cash flow or profits to liabilities.  Over 1990Q1-
2018Q4, an AR(1) moving average of GDP with coefficient of 0.207 achieves the maximum correlation 
coefficient of about 99.5% with US, non-financial-corporate liabilities.  

After deriving ZG projections from a GDP scenario, the model applies a formula for bridging from ZGs to 
industry and region Zs.  See below (Table 1) the formula that results from regressing past, quarterly 
changes in industry and region Zs on lagged values of industry and region Zs, lagged values of quarterly 
changes in industry and region Zs, and contemporaneous and lagged values of quarterly changes in ZG.  
For simplicity, we assume the same model for all industries and regions and use a pooled sample in 
estimation. 

Table 1:  Regression Results for GDP-Only Bridge Model 

Variable Type Variable Description 
Point 

Estimate 
Est Std 
Error 

Dependent Industry or Region Z Quarterly Change NM NM 

Explanatory 

Industry or Region Z Lagged -0.07 0.01 
Industry or Region Z Quarterly Change Lagged 0.15 0.02 
ZG Quarterly Change 0.31 0.02 
ZG Quarterly Change Lagged -0.04 0.02 

Goodness of Fit R-Squared 17%  
Sources:  Authors’ calculations using Z-Risk Engine formulas, CreditEdge data from Moody’s 
Analytics, and GDP data from the Bureau of Economic Analysis of the US Department of 
Commerce. 
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PIT Model’s MEV Transformations and Bridge Formula 
This model has three, MEV drivers:  stock prices, credit spreads, and GDP.  The model transforms each of 
these MEVs into Z indices.  The GDP transformation occurs as described above for the GDP-only model.   
The stock-price and credit-spread transformations occur as described below.  

The model derives an asset-value Z, denoted ZA by 

• forming an AR(1) moving average of quarterly, S&P500, stock-price-index values,  
• taking natural logarithms of one plus the quarterly ratios of the stock-price index to its moving-

average,  
• subtracting the 1990-to-date, average value of the logarithmic ratio, thereby producing a cycle-

gap measure, and 
• dividing by the standard deviation of annual changes in the cycle-gap measure. 

The ZA series shows a small cyclical decline in 1991 and large drops in 2001-02 and 2007-08 (Figure 4). 

   

Figure 4:  US ZA Series for 1990Q1to 2018Q4.  Authors’ calculations using S&P 500 price series obtained 
at https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC 

Division by a moving average approximates the effect of forming the ratio of MtM equity to non-financial-
corporate liabilities.  Then, by adding one, the equity/liability ratio becomes an asset-value/liability one.  
Over 1990Q1-2018Q4, an AR(1) moving average of the S&P index with coefficient of 0.07 achieves the 
maximum correlation coefficient of about 99.7% with US, non-financial-corporate liabilities.  

The model derives the credit-spread Z, denoted ZS, by 

• taking the negative of the inverse normal of the BBB spread divided by 0.6, thereby obtaining a 
DD indicator, 

• calculating an AR(1) moving average of the DD series, using an AR(1) coefficient of 0.07, 
• deducting the moving averages from the DDs, thereby obtaining a DDGAP series, and 
• subtracting the 1990-to-date average value of the DDGAP series and dividing by the standard 

deviation of annual changes in the DDGAP series, thereby producing a Z series. 
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The ZS series shows a small cyclical decline in 1991, modest drops in 1997-98 and 2000-01, and a very 
large fall in 2007-08 (Figure 5). 

   

Figure 5: US ZS Series for1990Q1 to 2018Q4.  Authors’ calculations drawing on Moody’s seasoned Baa 
bond yields obtained at https://fred.stlouisfed.org/series/BAA and 10-year Treasury yields obtained at 

https://fred.stlouisfed.org/series/DGS10 

After deriving the ZG, ZA, and ZS projections implied by a scenario for GDP, stock prices, and BBB spreads, 
the model applies a formula for bridging from the three, MEV Zs to industry and region Zs.  The bridge 
formula results from regressing past, quarterly changes in industry and region Zs on lagged values of 
industry and region Zs, lagged values of quarterly changes in industry and region Zs, and 
contemporaneous and lagged values of quarterly changes in ZG, ZA, and ZS (Table 2).  Again, as with the 
GDP-only approach, we assume a common model for all sectors and use a pooled sample in estimation. 

Table 2:  Regression Results for PIT Bridge Model 

Variable Type Variable Description 
Point 

Estimate 
Est Std 
Error 

Dependent Industry or Region Z Quarterly Change NM NM 

Explanatory 

Industry or Region Z Lagged -0.05 0.00 
Industry or Region Z Quarterly Change Lagged 0.09 0.02 
ZA Quarterly Change 0.39 0.01 
ZA Quarterly Change Lagged 0.07 0.02 
ZS Quarterly Change 0.22 0.02 
ZS Quarterly Change Lagged 0.00 0.02 
ZG Quarterly Change 0.03 0.02 
ZG Quarterly Change Lagged 0.01 0.02 

Goodness of Fit R-Squared 50%  
Sources:  Authors’ calculations using Z-Risk Engine formulas, CreditEdge data from Moody’s 
Analytics, and GDP data from the Bureau of Economic Analysis of the US Department of 
Commerce. 
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Remaining Components Common to the Two Approaches 
We now describe the common, downstream components of the GDP-only and PIT approaches.  These 
components draw on the industry and region Zs coming out of the bridge models and, in the end, deliver 
the ECLs implied by the MEV scenarios 

As noted earlier, combined, industry-region Zs enter as inputs into the PD, LGD, and EAD models.  The 
formula (1) below produces the industry-region-composite, Z indices. 

 𝑍",$,% =
𝑤"𝑠"𝑍",% + (1 − 𝑤")𝑠$𝑍$,%

.𝑤"/𝑠"/ + (1 − 𝑤")/𝑠$/ + 2𝑤"(1 − 𝑤")𝜌",$𝑠"𝑠$
 (1) 

Here I denotes an index identifying an industry, R an index identifying a region, 𝑍",$,% the Z value at time t 
for the composite of industry I and region R, 𝑍",% the Z value at time t for industry I, 𝑍$,%the Z value at time 
t for region R, 𝑤" the optimal weight, based on historical estimation of listed-company, DD changes, for 
combining industry-I’s DDGAPs with and regional ones, 𝑠"the historical standard deviation of one-period 
changes in industry-I DDGAPs, 𝑠$the historical standard deviation of one-period changes in region-R 
DDGAPs, and 𝜌",$  the correlation coefficient between industry-I and region-R, one-period Z changes. 

The numerator in (1) is a weighted average of industry and region DDGAPs.  The denominator is the 
standard deviation of one-period changes in the industry-region DDGAP.  Owing to the limited size of the 
samples, which make industry-region cross-tabs impractical, we use weighted averages of separate, 
industry and region indices as estimates of industry-within-region indices. 

The trials apply Probit-PD models, Tobit-LGD models, and Probit-CCF models.  For each facility, we draw 
on the relevant, industry-region Z in translating the PDs, LGDs, and credit-conversion factors (CCFs) from 
TTC to PIT values as of each scenario quarter.  

Each quarterly, conditional PD arises from the formula (2)  

 𝑃𝐷|𝑍",$,%
5 = Φ

⎝

⎛−
𝐷𝐷99: + 𝐷𝐷𝐺𝐴𝑃",$,%

5

.1 − 𝜌",$
5

⎠

⎞ = Φ

⎝

⎛−
−Φ?@(𝑃𝐷99:) + .𝜌",$

5 A𝑍",$,%
5 − 𝑍B,",$

5 C

.1 − 𝜌",$
5

⎠

⎞ (2) 

   
Here, 𝑃𝐷|𝑍",$,%

5 denotes the PD in the quarter ending at time t, conditional on 𝑍",$,%
5 , which is the industry-

region Z, scaled for a quarterly model, at time t.  Φ represents the standard normal, cumulative 
distribution function, 𝑃𝐷99:  the obligor’s, quarterly TTC PD, 𝜌",$

5  the industry-region, systematic factor’s 

proportion of overall, quarterly, DDD variance, and 𝑍B,",$
5  the relevant, quarterly, Z-norm value.    

Z-norm accounts for the convexity of the PD function.  To calculate the conditional, PIT PD in a quarter, 
one needs to enter into the Probit function the expected value of DD (PIT) at the end of the quarter.  One 
may obtain this DD as the TTC DD plus the end-of-quarter DDGAP.  This DDGAP is the same as the square 
root of rho times the end-of-quarter Z.  Following a familiar convention, one may start from the TTC PD.  
This PD arises as a long-run average over many cyclical settings.  Due to the PD-function’s convexity, this 
TTC PD exceeds the PD conditional on DD being at its TTC value.  Thus, the negative of the inverse normal 
of the TTC PD will fall short of the TTC DD.  How much less?  By the square root of rho times Z-norm.  
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Indeed, this is the way we define Z-norm.  Consequently, rearranging components, one finds that the 
numerator in the far right in (2) produces the needed result -- the TTC DD plus the end-of-quarter, DDGAP. 

Conditional ELGDs under the Tobit model arise from the formula (3).   Recall that the LGD model using 
quarterly scaling produces the same result as the model using annual scaling.  The calculations in the trials 
use the annually-scaled model as depicted below. 

 

𝐸𝐿𝐺𝐷|𝑍",$,%
5 = 𝐸𝐿𝐺𝐷|𝑍",$,% = ΦF−

1 −𝑚
𝑠 H +𝑚IΦF

1 −𝑚
𝑠 H − ΦJ−

𝑚
𝑠
KL

+𝑠 IϕJ−
𝑚
𝑠 K − ϕF−

1 −𝑚
𝑠 HL

𝑚 = 𝑚N +𝑚O𝑍",$,%
𝑠 = 𝑒𝑥𝑝A𝑠N + 𝑠O𝑍",$,%C
𝑚N = 𝑏𝑎𝑐𝑘𝑠𝑜𝑙𝑣𝑒𝑑	𝑏𝑎𝑠𝑒𝑑	𝑜𝑛	𝑇𝑇𝐶	𝐸𝐿𝐺𝐷
𝑚O = −0.04
𝑠N = −0.91
𝑠O = −0.06

 (3) 

   
Here ϕ (lower-case Φ) denotes the standard-normal, density function, m the Tobit central tendency, s the 
Tobit standard deviation, exp the exponential function, and 𝑚N,	𝑚O, 𝑠N, and 𝑠O parameters in the 
functions determining m and s.  We’ve set the values of all parameters other than 𝑚N to values obtained 
on average in past research.  Then the TTC LGD input determines 𝑚N.  In detailed, LGD modeling, the 
𝑚N	and 𝑠N parameters would arise as functions of facility structural features such as collateralization and 
seniority.  But such structural effects are assumed static, unaffected by credit-cycle conditions and already 
subsumed in the TTC LGD.  Thus, these features need not appear explicitly in these trials. 

The ELGD function is close to linear in the relevant range.  Thus, no Z-norm adjustment occurs. 

Conditional ECCFs arise from formula (4). 

 
𝐸𝐶𝐶𝐹|𝑍",$,%

5 = 𝐸𝐶𝐶𝐹|𝑍",$,% = ΦA𝑐N + 𝑐O𝑍",$,%C
𝑐N = 𝑏𝑎𝑐𝑘𝑠𝑜𝑙𝑣𝑒𝑑	𝑏𝑎𝑠𝑒𝑑	𝑜𝑛	𝑇𝑇𝐶	𝐸𝐶𝐶𝐹
𝑐O = −0.04

 (4) 

   
The -0.04 value for 𝑐O reflects past EAD modeling results for RCFs.  Conditional EADs result from formula 
(5). 

 𝐸𝐸𝐴𝐷|𝑍",$,%
5 = 𝐸𝐸𝐴𝐷|𝑍",$,% = L ∙ JEU + 𝐸𝐶𝐶𝐹|𝑍",$,% ∙ (100%− 𝐸𝑈)K	 (5) 

   
Here, L denotes the facility limit, which is constant due to the static-portfolio assumption. 

The conditional, PD, LGD, and EAD estimates of conditional determine the conditional ECL estimates as 
follows. 

 𝐸𝐶𝐿|𝑍",$,%
5 = 𝑃𝐷|𝑍",$,%

5 ∙	𝐸𝐿𝐺𝐷|𝑍",$,%
5 ∙ 𝐸𝐸𝐴𝐷|𝑍",$,%

5  (6) 
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The ECL estimates in turn produce estimates of charge-offs and identified impairments (formula (7)). 

 𝐶𝑂% =
1

𝑝𝑟_𝑑𝑢𝑟
∙ 𝑀%?@

𝑀% = 𝑀%?@ + 𝐸𝐶𝐿% − 𝐶𝑂%
 (7) 

   
𝑀%	denotes identified impairments at time t, 𝐶𝑂%  charge-offs at time t, and 𝑝𝑟_𝑑𝑢𝑟 the average duration 
of identified impairments, set to four quarters in these trials. 

The estimates of book values of loans come from the following formulas. 

 

𝑉% = 𝑉q,% + 𝑉r,%
𝑉q,% = 𝑉q =s𝐸𝑈t

t

𝐿t

𝑉r,% = F1 −
1

𝑝𝑟_𝑑𝑢𝑟H
𝑉r,%?@ +s𝑃𝐷t,%

t

𝐸𝐸𝐴𝐷t,%

 (8) 

   
Here 𝑉% denotes the book value of loans, 𝑉q,% the value of the good book, 𝑉r,%the value of the bad 
(impaired loan) book, and f a facility identifier.  Due to the static-portfolio assumption, the value of the 
good book remains constant.  We compute it as the sum of the products of limits, 𝐿t, and expected 
utilization rates, 𝐸𝑈t.  The model calculates each quarterly charge-off rate as 𝐶𝑂% 𝑉%?@⁄ . 

Industry-Region Sectors and Credit Portfolio Used in the Trials 
In the trials, we use 20, industry-regional groupings in varying proportions of the total, lending limit (Table 
3). Within each industry-region subset of the portfolio, the facilities have static, TTC attributes (Table 4).   

Table 3:  Industry-Region Sectors Used in the Scenarios 

Industry Region1 Proportion 
Aerospace and Defense North America (non-FI) 1% 
Banking North America FI 5% 
Basic Industries North America (non-FI) 5% 
Business and Consumer Services North America (non-FI) 20% 
Chemicals and Plastic Products North America (non-FI) 2% 
Construction North America (non-FI) 10% 
Consumer Products North America (non-FI) 2% 
Finance, Insurance, and Real Estate North America FI 10% 
Hotels and Leisure North America (non-FI) 5% 
Machinery and Equipment North America (non-FI) 3% 
Media North America (non-FI) 5% 
Medical North America (non-FI) 5% 
Mining North America (non-FI) 1% 
Motor Vehicles and Parts North America (non-FI) 5% 
Oil and Gas North America (non-FI) 3% 
Retail and Wholesale Trade North America (non-FI) 6% 
Metals North America (non-FI) 4% 
Technology North America (non-FI) 4% 
Transportation North America (non-FI) 3% 
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Utilities North America (non-FI) 1% 
All  100% 
1 North America º US and Canada 

 

Table 4: Static Attributes of Facilities Within Each Industry-Region Sub-Portfolio 

Weight 
Entity TTC 

Grade 
Facility 
Type1 

Limit 
$s mm 

Primary 
Region 

Primary 
Industry EU2 

PD 
TTC3

 

ELGD 
TTC4

 

ECCF 
TTC5

 

10% A 
RCF 30 

North 
America 
or North 
America 

FI 

One of 20 

10% 
0.01% 

40% 75% 

TL 30 100% 40% 100% 

25% BBB 
RCF 30 20% 

0.03% 
40% 45% 

TL 30 100% 40% 100% 

45% BB 
RCF 30 30% 

0.14% 
35% 45% 

TL 30 100% 35% 100% 

15% B 
RCF 30 30% 

0.97% 
30% 45% 

TL 30 100% 30% 100% 

5% CCC 
RCF 30 50% 

6.84% 
25% 45% 

TL 30 100% 25% 100% 
100% All All 606 All All 63% 0.56% 27% 73% 

1 RCF º revolving credit facility; TL º term loan. 
2 EU º expected utilization of credit line other than in default. 
3 PD TTC º quarterly TTC PD º quarterly PD conditional on Z = Z-norm. 
4 ELGD TTC º expected value of LGD conditional on Z = 0. 
5 ECCF TTC º expected value of CCF conditional on Z = 0. 
6 Calculated as a weighted sum of limits, with the weights in the left-hand column distributed evenly to the 
associated, RCF and TL facilities.  Thus, in the case of the A-graded obligor, the 10% weight gets distributed 
5% to the RCF and 5% to the TL. 

 

CCAR-2019 Scenarios 
The CCAR-2019 economic assumptions for the MEVs entering into the baseline and SA scenarios in this 
paper appear below (Table 5).  GDP paths enter into the GDP-only model.  GDP, credit spread, and MtM-
asset-value paths enter into the PIT model.  In that PIT model, we represent credit spreads by the BBB 
corporate-bond yield minus the 10-year Treasury yield.  We estimate MtM, asset values on the basis of 
the S&P 500 stock-price index.  In running CCAR scenarios for the S&P index, we assume that it changes 
at the same rates as the Dow Jones Total Stock Market Index.  The CCAR scenarios specify paths for the 
latter index. 

Table 5:  CCAR-2019 Economic Assumptions for MEVs Used in the Trials 

Date 
Nominal GDP 

Growth 
10-Year 

Treasury Yield 
BBB Corporate 

Yield 
Dow Jones Total 

Stock Market Index 
2018Q4 4.60 3.00 5.00 25,725 

 Baseline 
2019Q1 4.20 2.90 4.60 26,026 
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2019Q2 4.80 3.00 4.80 26,367 
2019Q3 4.40 3.10 4.90 26,687 
2019Q4 4.20 3.20 4.90 26,998 
2020Q1 4.00 3.20 4.90 27,299 
2020Q2 4.00 3.20 4.90 27,603 
2020Q3 3.70 3.20 4.90 27,894 
2020Q4 3.80 3.20 4.90 28,193 
2021Q1 4.30 3.40 5.20 28,529 
2021Q2 4.10 3.50 5.10 28,858 
2021Q3 4.10 3.50 5.20 29,191 
2021Q4 4.10 3.50 5.20 29,527 
2022Q1 4.10 3.60 5.20 29,868 

 Severely Adverse 
2019Q1 -3.50 0.80 5.30 17,836 
2019Q2 -7.70 0.90 6.10 14,694 
2019Q3 -5.70 1.00 6.50 13,317 
2019Q4 -3.40 1.10 6.50 12,862 
2020Q1 -2.10 1.20 6.20 13,462 
2020Q2 0.50 1.20 5.80 14,421 
2020Q3 1.60 1.20 5.50 15,479 
2020Q4 4.80 1.20 5.10 16,847 
2021Q1 5.40 1.50 5.00 17,788 
2021Q2 5.90 1.60 4.70 19,352 
2021Q3 6.20 1.60 4.40 21,039 
2021Q4 6.40 1.70 4.00 22,940 
2022Q1 6.30 1.80 3.70 25,137 

Source:  Board of Governors of the Federal Reserve System.   Data transcribed from 
https://www.federalreserve.gov/newsevents/pressreleases/files/bcreg20190213a1.p
df 

Alternative CCAR Results 
The two alternative models presented here offer very different estimates of losses under the CCAR-2019 
SA scenario.  The GDP-only model’s loss projections fall far short of those from the PIT model.   

Consider first the industry-region Z projections.  In the SA scenario, the GDP-only model foresees much 
less stressful Z outcomes than the PIT model (Figure 6).  Consider the weighted average of all industry-
region sectors.  The GDP-only model projects that, in the SA scenario, the combined Z would bottom out 
at about 1.35 annual-standard-deviation units below the baseline outlook.  This shortfall represents less 
than half of the 2.93-unit gap projected by the PIT model.   
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Figure 6:  Weighted Average of Industry-Region Zs Relative to Baseline Under Alternative Models 

Due to the nonlinearity of the relationship between losses and Zs, the shortfall in the GDP-only-model’s 
stress outcomes expand when measured as charge-off rates (Figure 7).  In the SA scenario, the GDP-only 
model projects that the charge-off rate in 2020Q2-2021Q1 would rise to about 52 bps over the baseline.  
This compares with the PIT model’s projection of about 197 bps above the baseline.   Starting at 17 bps in 
2018, the charge-off rate in the SA scenario reaches an annualized value of 230 bps in 2020 under the PIT 
model.  This peak annual value stands at 3x the TTC rate of 77 bps and over 10x the comparatively low 
starting value.  This reconciles with the historical, US bank, C&I charge-off rates, which in 2009 reached 
an all-time annual high of 230 bps or about 3x the long-run average and more than 10x the lowest values.    

 

Figure 7:  Portfolio Charge-off Rates Under Alternative Models   

Recall that the two models have the same, PIT components downstream from the MEV scenarios.  Thus, 
the results above demonstrate that, without market-value, MEV drivers, a scenario model that otherwise 
would be PIT is no longer PIT.  

The comparative results above focus on projections errors, assuming accurate, initial estimates in 2018Q4 
of industry and region Zs and PIT PDs, LGDs, and EADs.  Accurate estimates of initial conditions in 
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wholesale credit draw on PIT indicators.  Banks that exclude such indicators from projections would likely 
also exclude them from assessments of current conditions.  This would produce further errors, which 
could exacerbate or partly offset projections errors.  In any case, a more accurate approach would include 
market-value-related, PIT measures both in gauging current conditions and in projecting future losses. 

Topics for Further Investigation 
The models in this study are parsimonious.  In both the GDP-only and PIT case, the bridge formula is the 
same for every industry and region.  A more elaborate approach might involve somewhat different drivers 
and coefficients for each industry or region.  For example, the PIT model could draw on a variety of ZA 
indices, compiled separately for several industries and the non-financial and financial, regional groupings.  
And both models could draw on GDP and gross-output measures for each of several industries within the 
US.  However, this detail doesn’t appear in the CCAR scenarios and so one would need to draw on more 
aggregate measures in bridging to these sectors.  Further, these more detailed drivers would serve largely 
as indicators of conditions specific to each of the industry and region, Z groupings.  Thus, they would 
amount to substitutes for the past, industry and region Z values that now appear in the bridge formulas. 
On this account, we wouldn’t expect that more detailed MEVs would materially alter the results of this 
study. 

As noted earlier, some banks apply hybrid Zs as the systematic-risk inputs into the PD, LGD, and EAD 
models used in estimating ECLs under stress or baseline conditions.  Such an approach may start by 
imputing historical Zs from past migrations of non-PIT ratings. {footnote].  After that, the approach may 
involve a formula, estimated using historical data, for projecting those Zs on the basis of forecasts of 
selected MEVs. This approach delivers hybrid, ECL estimates.  Such estimates will understate cyclical 
variations in losses.  We’ll address this deficiency in a future paper.  

The results above reveal inadequacies in wholesale-credit-scenario models relying solely on NIPA drivers.  
To our knowledge, many banks have such models.  This raises questions about the continued reliance on 
such approaches and the oversight provided by model reviewers and regulators.  How can such models 
persist?  Do they involve upwardly biased, PD, LGD, and EAD models, which, given under estimates of 
increases under stress conditions, lead to credible estimates of stress losses?  If so, then those same 
models would produce upwardly biased estimates of baseline losses for CECL or IFRS 9 provisions.  So a 
bank must use fully PIT models  to produce accurate estimates of losses under a wide range of credit-cycle 
conditions.   

Summary 
As presented in this case study, a credit-scenario model relying solely on GDP as a MEV driver 
underestimates the increase in C&I, stress losses relative to a baseline by over 60%.   Still, many banks use 
models driven mainly by GDP and possibly other, NIPA MEVs both in stress testing and provisioning.  The 
results here indicate that those banks urgently need to upgrade their wholesale/commercial credit 
models, introducing market-value-related, PIT drivers.   

In both the GDP-only and PIT models examined here, the approaches downstream from the MEV 
scenarios, including the direct inputs into the PD, LGD, and EAD models, are PIT.  Thus, the results show 
that, without market-value, MEV drivers, scenario models that otherwise would be PIT are no longer so.  
Such non-PIT models underestimate the cyclical variability of losses.   
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Other deficiencies such as hybrid (less than fully PIT), direct inputs into the PD, LGD, and EAD models 
would produce non-PIT estimates that understate temporal variations in credit losses.  We’ll address this 
concern in a forthcoming ZRE Working Paper. 
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