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ABSTRACT 

In contrast with Basel-II rules, which call for the use of through-the-cycle (TTC) probabilities of default 

(PDs) and downturn (DT) loss-given-default rates (LGDs) and exposures at default (EADs), the regulatory 

stress tests and the new IFRS9 and proposed CECL accounting standards require institutions to use point-

in-time (PIT) projections of PDs, LGDs, and EADs.  By accounting for the current state of the credit cycle, 

PIT measures track closely the variations in default and loss rates over time.  In past publications the 

authors have described the derivation of industry-region credit cycle indices (CCIs) and the use of those 

indices in converting legacy wholesale credit PD models, which typically understate cyclical variations, into 

fully PIT ones.  This paper extends that framework to cover estimation of PIT LGDs and EADs for wholesale 

exposures. The authors offer options for the formulation of such models and discuss their experience in 

building PIT LGD and EAD models, and show that, by accounting for the probabilistic evolution over time 

in industry-region credit-cycle indices, one can derive joint, PD, LGD, EAD scenarios for use in the 

regulatory stress tests or in estimating the term structures of expected credit losses (ECLs) as needed for 

IFRS 9/CECL.  

 

Keywords: Point-in-Time (PIT), Through-the-cycle (TTC), Loss Given Default (LGD), Exposure at Default 

(EAD), IFRS9/CECL, Expected Credit Loss (ECL), Stress Testing 

 

1 OVERVIEW 

The Basel II Advanced Internal Ratings Based (AIRB) approach have inspired financial institutions to 

develop models not only for PD, but also for LGD and EAD. In calculating RWA, the standards call for the 

use of TTC estimates of PD, which get converted to stress values via the IRB formula, and DT estimates of 

LGD and EAD.  BCBS introduced the distinction between average and downturn LGD [1]. Paragraph 434 of 

[1] states that a higher than average DT LGD was a mechanism for capturing stressed conditions. Further, 

to this, paragraphs 468 and 475 in [1] specifies that institutions pursuing advanced approaches must use 

DT estimates of LGD and EAD under circumstances in which those measures exhibit cyclical volatility. 
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The use a TTC PD and fixed, DT settings for LGD and EAD helps stabilize RWA by making it insensitive to 

time varying credit cycle changes.  This places the entire emphasis on the risk changes caused by an 

institution’s portfolio choices and stops capital requirements from falling during a boom that could 

presage a decline, however, it also implies that RWA fails to measure current risk. 

In regulatory stress tests and in new IFRS 9 and proposed CECL standards, the regulatory and accounting 

authorities have adopted the contrary position, asking institutions to apply their best, current-risk 

measures, the so-called PIT ones.  For instance, paragraph 65 of the EBA’s stress-testing-methodology 

document [2] states that, in all credit-risk-related calculations except RWA for all portfolios and not just 

AIRB ones, institutions should use PIT measures that reflect the current outlook for business-cycle 

conditions.  The IFRS 9 requirements, paragraph 5.5.17, [3] state that ECL estimates should: 

• correspond to unbiased, probability-weighted averages as determined by evaluating a range of 

possible outcomes, and 

• draw on reasonable and supportable information that is available without undue cost or effort at 

the reporting date about past events, current conditions, and forecasts of future economic 

conditions. 

 

We define unconditional PIT PD/LGD/EAD as an unbiased, unconditional estimate of default 

rate/loss/exposure over any specified horizon.  Thus the term PIT measure is essentially a term structure 

as understood in literature and in this paper, we refer to models that produce the entire term structure. 

A good unconditional PIT estimate should account for all relevant information including the current state 

of the credit cycle and unconditional outlook for its evolution.  We define PIT ECL in analogous fashion 

and believe that ECLs for IFRS9 and CECL should correspond to unconditional expectation of the future 

drawing on today’s unconditional PIT measures.   

 

We define conditional PIT PD/LGD/EAD as estimates of default rate/loss/exposure over any specified 

horizon, but which are derived based on occurrence of a particular macroeconomic or credit-factor 

scenario.  A good conditional PIT estimate accounts for all relevant information including the current state 

of the credit cycle till today but only the specified macroeconomic or credit-factor scenario in the future.  A 

good example is TTC measure which we think of as a special conditional case where today and future 

credit conditions are conditioned to be equal to long run credit conditions. We define conditional PIT ECL 

in analogous fashion and believe that ECLs for Stress Testing should correspond to conditional expectation 

of the future.   

For clarity on terminology of PIT measures refer [10]. 

Ways for deriving PIT LGDs and EADs using the same general framework that has been previously used for 

PIT PDs is described in detail in the following sections. 

2 PIT LGD MODEL MOTIVATION 

 

A particular view of the default process influences the design of wholesale LGD models.  Under that view, 

a firm defaults if its asset value falls below a threshold that implies a particular, asset-value deficiency 

relative to liabilities.  The deficiency trigger could be 30%.  If so, the LGD of all claims combined would be 

about 30%.  But this is 30% plus or minus unpredictable variations attributable to the fuzziness of asset 

values in default and the haziness of the default-triggering mechanism.  To recognize this LGD risk, one 

would account for the entire, LGD probability distribution function (PDF). Under circumstances with 

enough loss data to permit estimation of a PDF, several studies find that, in part due to threshold effects, 

the LGD PDF is distinctly non-normal.  Indeed, one generally observes that, before accounting for recovery 
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expenses, LGDs exhibit a bimodal distribution with point masses at 0% and 100% and a diffuse distribution 

between those extremes.  Historically, over 40% of first-lien, US syndicated loans in default have 

experienced no loss.  For loans to SMEs, the probabilities of both 0% and 100% LGDs can be substantial. 

 

Among the factors with a predictable effect on the overall LGD, the credit cycle stands out as perhaps 

most important, since it implies that PDs and LGDs are correlated.  Several studies present evidence of a 

relationship between the credit cycle and LGDs (see for example [4], [5] and [6]). A long list of references 

to earlier, LGD models in which aggregate DRs affects LGDs is presented in [6].  In terms of the conceptual 

view above, this credit-cycle effect indicates that the default threshold falls in downturns and rises in 

upturns.  This in turn implies that, in downturns, defaults occur in smaller numbers but with larger LGDs 

than if the default threshold remained fixed.  Despite this curious and generally unrecognized implication 

with respect to default incidence, the empirical relation between the credit cycle and LGD is well 

established and so has been embraced by the DT requirement of Basel II.    

 

In previous research (see [7], [8], [9], [10], [11] and [12]) credit cycle indices have been used to translate 

PD models that understate the cycle into PIT ones.  As a result, the translated PIT PDs best explain default 

rates. This study builds on previous research mentioned above and extends it to PIT LGD and PIT EAD and 

ultimately ECLs. Similar to their PD counterpart, the process of either converting a hybrid LGD model into 

a PIT LGD or re-developing a PIT LGD model is done using credit cycle indices. 

 

These credit cycle indices are derived from summarizing, within selected industries and regions, PDs from 

a broad-based, fully PIT model such as Moody’s CreditEdge.  These indices are used as conditioning factors 

in models for deriving PIT LGD probability distribution function (PDF).  The indices for distinct regions and 

industries allows one to recognize differences in the credit conditions of different sectors including the 

recent divergence between commodity producers and most other firms and between different 

countries/economies (see Figure 1). Industry effect is prominently highlighted in Figure 1 as it is 

considered to be a strong driver in previous studies (see [13]). 

 

Figure 1:  Comparison of Credit Cycle Indices across different Industries 

 

 

Among other potential conditioning factors, some studies find that the jurisdiction and industry of an 

exposure affect LGDs.  Previous research by authors has indicated few, statistically significant industry 

effects other than for utilities, especially regulated ones.  That defaults occur in a largely debt-financed 

business selling necessities priced at a mark-up over costs is hard to explain.  It’s not surprising, therefore, 
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that the LGDs are different, in fact much lower than in other businesses.  Further, possibly reflecting the 

dwindling returns from recover efforts on ever smaller loans, some studies of SME LGDs find that very 

small loans have higher average LGDs.  

 

Going beyond the overall LGD, the inputs with predictable effects on LGDs of individual claims mainly 

relate to priority.  This explains seniority and security being key factors affecting LGD.  

As a point of clarification, this section mostly refers to the modelling of so-called, ultimate-loss LGDs.  One 

derives these LGDs from recovery information and not from debt-instrument, market prices shortly after 

default.  One accomplishes this by:  expressing the cumulative, recovery amount as a present, discounted 

value (PDV) as of the default date; converting that PDV into a percentage, recovery rate by dividing by 

EAD; and subtracting that recovery rate from 100%.   

Ideally, one derives and models such LGDs for facilities.  But institutions may sometimes consolidate the 

recovery information at the level of the legal entity.  Under these circumstances, one obviously can’t 

identify different outcomes for individual facilities. 

See next a summary of some approaches to modelling wholesale LGDs as presented in several studies. 

Refer [4], [6], [13], [15], [16], [17], [18], [19] and [20].  

 

3 PIT LGD MODELLING CHOICES  

 

The choice of LGD modelling approach is largely dictated by the amount of data available for development 

and calibration.  (see Table 1). For corporate entities, data sources are plentiful and this makes it possible 

to include more explanatory factors influencing outcomes For other portfolios options are limited by loss 

data. We made use of standard assumption of 9% discount rate. 

 

Table 1 LGD model data availability for various portfolios 

Portfolio Data Availability to Large Institution Possible Explanatory Factors 

Corporates 

4000+ loss observations from 

S&P/Moody’s/GCD and perhaps 300 

from the institution’s experience over 

10 years. Note that majority of the 

S&P/Moody’s loss observations are 

North America based but there are 

more than a few hundred non-North 

American observations, enough to 

create representative robust models. 

Moreover, GCD is European focussed 

and has robust coverage. 

• Seniority 

– Ordinal:  Senior Secured, Senior 

Unsecured, Senior Sub, Sub, Junior 

– Cardinal: Debt Senior (%), Debt Junior 

(%) 

• Security 

– Ordinal:  First Lien, Second Lien, ..., 

Unsecured 

– Cardinal:  Collateral Coverage (%) 

• Facility type:  Revolving Credit Facility, Term 

Loan, Bond; proxy for ‘essentialness’ 

• Resolution time:  proxy for asset-value 

deficiency (default point) 

• Size:  important for smaller facilities; proxy for 

‘recovery effort’ 

• Utility dummy 

• Industry-region specific Credit Cycle Index 

Banks 

>100 S&P/Moody’s observations and 

about 50 from an institution’s 

experience over 10 years 

Seniority, Advanced/Developing Economy dummy, 

Security, Industry=Banking and Region Specific 

Credit Cycle Index. Separate treatment for Trade 

Finance and Covered Bond facilities 
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Portfolio Data Availability to Large Institution Possible Explanatory Factors 

Property 

>1000 observations from a vendor such 

as Trepp and perhaps 200 from an 

institution’s experience over 10 years 

Property type (e.g. residential, office, retail, 

industrial, hotel, healthcare), Credit Cycle Index. 

Project Finance 

>200 observations from S&P/Moody’s 

Project Finance Consortium and 

perhaps 30 from institution’s own 

experience over 10 years 

Asset Type, PFI/PPP and Gulf/non-Gulf country 

dummy variable, Industry-region specific Credit 

Cycle Index 

 

One also needs to consider the specification of the model that links explanatory variables to LGDs. Various 

functional forms for LGD model specification are described in [21].  Once again, data availability affects 

the choices available.  Options generally considered for various wholesale credit portfolios are presented 

in Table 2. 

 

It makes sense to choose the best approach allowed by the data. Collecting loss data is difficult and costly. 

For those with the necessary expertise, estimating and implementing LGD models is comparatively easy 

and cheap.  Thus one has difficulty justifying inferior approaches. If ample data are available, statistical 

best practice calls for modelling the entire LGD PDF, with the central tendency and spread of realized 

values influenced by factors such seniority, security, and the credit cycle. One needs PDF approaches for 

hypothesis testing and objective, model validation. Specifications for an LGD PDF include: 

• Tobit  

• Zero-One-Inflated-Beta  

If, however, data are sparse then one may need to settle on a simpler model, with perhaps the simplest 

form least demanding of the data being a look-up function determining an expected value for each of a 

number of categories defined by such things as seniority, security, obligor/facility type, and 

downturn/non-downturn. 

 

Table 2:  Various PIT LGD model specification options 

Model 

Type 

Model Description Model 

Output 

Pros Cons Typical Portfolios 

Look Up 

Table 

Model inputs 

determine cell in 

the look-up table 

Point 

Estimate 

Feasible with small 

samples 

Cliff effects; no 

hypotheses tests 

Funds, Sovereigns, 

Insurance 

Companies 

Parametric 

Expected-

Value 

Model 

Model inputs 

enter into a 

formula providing 

a point estimate 

Point 

Estimate 

More accurate 

than look-up; no 

cliff effects 

Calibration requires 

comparatively large 

samples; no 

hypothesis tests 

Corporate entities.  

Tobit Model inputs 

determine mean 

and standard 

deviation of a 

latent normal 

distribution 

PDF More accurate 

than look-up; no 

cliff effects; 

facilitates 

hypothesis tests 

Calibration requires 

comparatively large 

samples; unimodal 

form may be 

counterfactual 

Corporate entities, 

Banks, Property  

 

Zero-One 

Inflated 

Beta 

Model inputs 

determine 0 and 1 

probabilities and 

alpha and beta 

PDF More accurate 

than look-up; no 

cliff effects; 

facilitates 

hypothesis tests; 

Calibration requires 

comparatively large 

samples; more 

complex than Tobit 
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Model 

Type 

Model Description Model 

Output 

Pros Cons Typical Portfolios 

parameters of 

beta distribution 

more flexible than 

Tobit 

 

One may formulate a PIT LGD model using a Tobit specification is as follows 
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In which P(LGDi=0) and P(LGDi=1) are the probabilities of 0% and 100% LGDs for the ith case 

f() is the LGD probability density function for 0 < LGD < 1 for the ith case 

Φ - standard normal cumulative distribution function 

m is the latent mean for the underlying normal function 

s is the latent standard deviation for the underlying normal function 

mk – regression coefficient for kth factor in latent mean  

sk – regression coefficient for kth factor in standard deviation 

xk,i – kth independent factor like %Debt Above, %Debt Below, etc for the ith case 

m0 – intercept component of latent mean 

s0 – intercept component of latent standard deviation 

mZ. –intercept for credit cycle index component in latent mean 

sZ - intercept for credit cycle index component in latent standard deviation 

ZIR(i),t – Industry Region specific credit cycle index for ith case at time t 

 

The Tobit provides perhaps the simplest, PDF model that explains point masses at 0% and 100% and a 

smooth distribution between those extremes. It involves estimation of two parameters, a mean, m, and 

a standard deviation, s, both of which may be functions of seniority, security, the credit cycle, and other 

factors. One calibrates the model using maximum likelihood estimation (MLE). 
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In this formulation, the factor ZIR(t) stands out as key, since it ensures that the model is PIT. The remainder 

of the formulation explains cross-facility and cross-default-case, idiosyncratic variations.  Note that, unlike 

in the modelling of PDs, under the current, state-of-the-art one assumes that idiosyncratic effects occur 

only at the default time, not in a cumulative fashion over time.  This reflects an assumption that the inputs 

into LGD models other than Z factors remain static, unchanging in response to random variations over 

time in the related entity’s creditworthiness.  This may not be entirely true, but so far no one has produced 

data allowing one to test for “structural migration.”  Thus, only the Z factor explains inter-temporal 

variations in LGDs.  One can identify the significance of this effect through a simple likelihood ratio test of 

the credit-cycle index’s contribution as an additional factor.   

 

In the Tobit model above with the parameters set to values like those obtained in past work, a decrease 

in Z from 0 to -2, which represents a two annual-standard-deviation improvement (deterioration) in credit 

conditions, causes the expected value of the LGD of a typical loan to rise by roughly 10 percentage points.  

An increase in Z from 0 to 2 implies an LGD decline of about the same magnitude. Such sensitivity forms 

the basis for a PIT LGD model. Implemented in a batch process, an institution could use the model in 

updating regularly its PIT LGDs to reflect current and projected, credit conditions.   

 

The manner in which changes in the relevant, Z factor value from 0 to +/- 2 affect the illustrative Tobit 

PDF is illustrated in Figure 2, Figure 3, and Figure 4. The figures provide a visual feel of how the PDF shifts 

with change in Z factors.  One observes that, as the Z factor turns increasingly negative, the continuous 

part of the distribution shifts up (toward higher LGDs) and the probability of a 0% LGD falls and the 

probability of a 100% LGD rises.  One sees the opposite pattern as Z turns increasingly positive.  The 

expected values of LGD in these cases if Z being at -2, 0, and 2, respectively, are 36%, 25% and 14%.  
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Figure 2:  One Year PIT LGD Tobit Distribution for Z = -2  

 
 

Figure 3:  One Year PIT LGD Tobit Distribution for Z = 0 
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Figure 4:  One Year PIT LGD Tobit Distribution for Z = +2 

 
 

One can similarly derive a PIT LGD models based on the Zero-One-Inflated-Beta specification.  This 

specification provides for a more flexible description of the data at the expense of more parameters to 

estimate.  Unlike the Tobit, the continuous part of the distribution doesn’t necessarily involve a central 

mode and this sometimes helps in fitting to SME outcomes with appreciable probabilities at both 0% and 

100% (Figure 5). 

Figure 5:  One Year PIT LGD Zero-One-Inflated-Beta Distribution for Z = 0 

 
 

Most applications call for the use of expected values of LGDs, often expectations conditional on particular 

Z scenarios.  The models providing point estimates produce only these expected values.  In the case of the 

PDF models, one can easily compute them from the PDFs.  

 

4 PIT EAD MODEL MOTIVATION AND OPTIONS 
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The models that explain EADs under credit lines have the following motivation.  Firms under duress draw 

down their lines so as to pay bills and buy time to turn the business around and avert default.  This simple 

logic implies that EAD depends on the amount of credit outstanding and the amount of unused headroom.  

Of course, institutions providing credit lines to a firm in distress have incentives to curtail access to those 

lines.  Thus, measures of covenant protection conceivably could also enter into EAD models, but evidently 

few have had success quantifying this plausible effect.  

 

Several studies have looked into determinants of EAD but research is generally limited by availability of 

consistent long term data. Detailed long term studies [22] have found size, collateralisation and maturity 

to be important determinants. In the author’s experience, other than credit-cycle effects discussed below, 

the amount outstanding and the amount of headroom are the only statistically significant determinants 

of EAD.   

 

As far as credit-cycle effects, the intuition is not entirely clear.  Perhaps, as the LGD data imply, the default 

threshold is lower in DTs and this gives firms more latitude to increase debt in part by drawing on credit 

lines.  In any case, the empirical evidence for credit-cycle sensitivity is much weaker for EAD than for LGD.  

Research conducted by authors has shown somewhat positive results, with some but not all samples and 

for some but not all revolving products indicating a significant credit-cycle effect. Regulatory guidance 

asks that one consider the possibility and this mechanism of deriving PIT EAD makes it complete and 

consistent with the rest of PD and LGD counterparts.  

 

However, there is plenty of anecdotal evidence to support the intuition behind the need for PIT EAD. At 

the time of writing the article, across the industry, oil and gas industry companies were maxing out (See 

[23], [24]) on their revolving credit facilities (RCFs) which are generally used to cover short term gaps. This 

does now surprises the authors as Figure 1 clearly shows that Global Oil and Gas industry is experiencing 

severe credit conditions which would naturally impact entities drawdown behaviour as they get close to 

default or try to avoid it altogether. The challenge is to model such behaviour effectively across different 

type of product types. 

 

Even more so than with PD and LGD, data development constitutes by far the greatest challenge in EAD 

modelling.  To start, due to the possible influence of an institution’s own policies and the absence of large, 

publicly available samples of EAD data, one may have no alternative to drawing exclusively on the 

institution’s own experience.   This limits sample size, which usually forces one to work with broad-based 

models that combine different facility types into a few, major kinds and place all legal entities under the 

same models.  Further, for some institutions, the matching of outstanding amounts to facilities and limits 

is problematic, forcing them to apply algorithms that in essence make intelligent guesses.  In addition, due 

to restructuring and replacement of facilities during the run up to default, the matching of facilities prior 

to and post default may pose challenges.  In some cases, one may need to link old facilities to one or more 

new ones and this may involve manual processes.  For contingent facilities, the data may have gaps making 

it difficult to cleanly identify the sequential development of an exposure from issuance to call to funding.  

In some of these cases, one may have trouble distinguishing the final cash exposures from other overdraft 

amounts.  Also, multi-obligor and multi-product facilities make it difficult to identify the effective limits 

and the relevant, draw-down propensities.  And finally, limit excess occur particularly as in modelling EAD 

one utilisations at default relative to limits prior to default.  In cases of smaller facilities, this can produce 

explosive values for CCFs and create stability problems in model estimation.  One can and must resolve 

these problems in some fashion.  But doing so accounts for the arduousness of EAD modelling.   
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Turning now to EAD models, as with LGD, analysts have considered a few, different options.  Three popular 

approaches including the simple CCF approach are summarized below (Table 3). Our preferred approach 

applies the zero-one-inflated beta specification, but also appends a Pareto tail in accounting for the 

occasional case of an EAD in excess of the limit.  Just like the LGD counterpart, the movement in Pareto 0-

1 Inflated EAD model probability distribution function can be visualized with Figure 6. The probability of 

1-year EAD = 0% or 100% is indicated by the discrete bars and probability of 0% < 1-year EAD < 100% and 

1-year EAD > 100% is given by the probability distribution curve. Figure 6 refers to the distribution at Z=0 

and it is easy to visualize how the entire distribution moves left when Z > 0 and moves right when Z < 0. 

 

Table 3:  Selected PIT EAD Model Options 

Model 

Type 

Model Description Model 

Output 

Pros Cons Typical 

Portfolios 

CCF Inputs (e.g. product 

descriptions, Z factors) 

determine a CCF from a 

look-up table; the CCF 

together with a line’s 

utilisation and limit 

determine the expected 

EAD  

Point 

Estimate 

Feasible with small 

samples 

EAD ≥ EBD 

restriction 

typically contrary 

to facts; no 

hypothesis tests 

All facilities, but 

material draw-

down risk 

occurs usually 

only with 

revolvers 

Affine EAD 

Model 

Inputs of product-type, 

utilisation, Z value, and 

limit enter into a 

formula providing a 

point estimate 

Point 

Estimate 

More accurate 

than CCF model 

No hypothesis 

tests 

All facilities, but 

material draw-

down risk 

occurs usually 

only with 

revolvers 

Zero-One 

Inflated 

Beta with 

Pareto Tail 

Inputs of product type, 

current utilisation, and Z 

determine UAD=0, 

UAD=1, UAD >1 

probabilities, alpha and 

beta parameters of beta 

probability density for 

0<UAD<1; and delta 

parameter for Pareto 

density for UAD>1 

PDF Potentially more 

accurate than 

point-estimate 

models; facilitates 

hypothesis tests 

Calibration 

requires 

comparatively 

large samples; 

prone to stability 

problems related 

to UAD > 1 

observations 

All facilities, but 

material draw-

down risk 

occurs usually 

only with 

revolvers 
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Figure 6:  One Year PIT EAD Distribution for Z = 0 

 
 

As with LGD, most applications call for EAD expected values.  The models providing point estimates 

produce only these expected values.  In the case of the PDF model, one can easily use it to compute the 

expected values. 

 

5 PIT LGD AND EAD MODELS AND DT LGDs AND EADs 

 

Given PIT LGD and EAD models, one can obtain DT values of LGDs and EADs as needed for RWA by entering 

into those models together with current values of the other, assumed static inputs a particular, negative 

Z value for the relevant, industry-region credit-cycle index.  If, for example, one interprets DT as meaning 

“average conditions during official recession periods,” one will find that this implies entering a Z value 

slightly in below negative one.  Indeed, in a stress test in which the relevant Z factor falls from a value of 

zero to negative 2, one would ordinarily calculate the PIT LGDs and EADs using that negative 2 value.  

However, for Basel II, setting the Z to an average recession value is the standard convention, since this 

conforms to the alternative practice of identifying DT parameters with the average values observed in 

recessions. 

 

Most institutions today have DT LGDs and EADs but no AIRB models sensitive to credit-cycle fluctuations.  

However, the DT estimates together with one of the PIT models introduced earlier offers a way of inferring 

PIT parameters.  To do this, one accepts the DT values and assumes that they arise from one of the PIT 

models at a specified DT Z value.  Then, for each facility with given DT LGD and EAD, one back solves the 

chosen models for the consolidated effect of other inputs. One does this so that the models’ expected 

values at the assumed. DT Z value reconcile with the given, DT values.  One then can use those models 

with the inferred consolidated effect of other inputs to solve for expected LGD and EAD values at other Z 

values appropriate for PIT estimates.  This approach would provide an expeditious way to estimate the 

PIT parameters needed for stress testing and IFRS 9/CECL prior to developing new, PIT LGD and EAD 

models.   

 

6 PIT LGD SCENARIOS FOR IFRS 9/CECL AND STRESS TESTING 

With models for all PIT PD, LGDs and EADs in hand, one now can now apply them along with models for 

PIT PDs in creating joint, PD, LGD, and EAD scenarios and thereby PIT loss scenarios.  The topic and sub-
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topics of deriving PIT loss scenarios deserve detailed sections in themselves but are summarized here 

briefly. One may accomplish the task of deriving PIT losses by: 

 

• developing Z-factor scenarios in one of the ways discussed below, 

• entering the one-period Z changes (∆Z) from each Z-factor scenario into a multi-threshold, Probit 

model of transitions from each credit state (grade) to default and to each, non-default state and 

thereby creating, for each entity with a known, initial, PIT PD scenarios, 

• entering the Z values from each Z-factor scenario period-by-period into the PIT LGD and EAD 

models and thereby obtaining PIT, ELGD (Expected LGD) and EEAD (Expected EAD) scenarios that 

are jointly determined with the PD ones. 

 

From each joint, PD, ELGD, EEAD scenario, one gets an ECL scenario by forming the period-by-period 

products: ∆PD x ELGD x EEAD.  Note that PD denotes a cumulative probability of default and ∆PD 

represent a one-period, marginal probability of default. 

 

To generate period-by-period PD scenarios from the repeated application of one-period, PIT PD models, 

one must create scenarios for the one or more inputs into those models.  Perhaps the simplest way to 

accomplish this involves the Probit, credit-factor-conditional, transition-matrix model.  This was first 

introduced to a broad audience by CreditMetrics [25] and it now serves as a mainstay of the regulatory-

stress-test processes at many institutions.   

 

One can view the grades or credit states in the model as binned default-distance (DD) measures, with DD 

representing the single, consolidated input into a Probit PD model.  The transition rates to default reflect 

the PIT PD model.  The transition rates to the other states correspond to the stochastic projections of PD-

model inputs.  Thus, the transition model includes both a PD model and an input-evolution model and so 

amounts to a tidy way of consolidating all of the needed components.  Observe that the transition 

probabilities vary with ∆Z, which is the one-period change in Z.  PIT transitions involve changes in PIT 

states.  Thus, changes in rather than levels of the cycle influence transition rates.  In contrast, levels of the 

cycle influence the ELGDs and EEADs. The process of determining ECL scenarios for stress testing and for 

IFRS 9/CECL reduces to the generation of Z scenarios.  Here one has two broad options:  

 

Statistical scenarios: Surely the simplest way of producing statistical scenarios involves the use of time-

series models.  These models are commonly used in credit-value-at-risk applications. 

 

One starts with the current and past values of the relevant Zs and obtains scenarios for their stochastic 

evolution by applying AR1 or AR2 models calibrated to historical experience.  In this case, the Z factors 

evolve under the influence of  

i) mean reversion, which causes them to gravitate toward zero,  

ii) momentum, which pushes them in the same direction as they moved most recently, and 

iii) most importantly, random shocks.   

One can quite easily estimate such models and apply them in generating thousands of scenarios. By 

averaging the ECLs implied by the joint PD, ELGD, and EEAD scenarios arising from such Z scenarios, one 

gets a result corresponding to the probability weighted average, ECL term structure that IFRS 9 or CECL 

demand.  

 

See below Z paths for two sectors with very different initial conditions and so quite different outlooks 

(Figure 7and Figure 8). In each case, momentum has a short run effect and mean reversion a persistent 
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one.   Stochastic projections for the next 8 quarters are demonstrated below. Although only three lines 

corresponding to the period-by-period mean, 95th percentile, and 5th percentile) paths are shown below 

here, in practice thousands of simulations of Zt, t>today which then drive simulated LGDt paths are drawn 

using Monte Carlo Simulation techniques.  

 

Figure 7:  Credit Cycle Index and Forecasts for Global Oil and Gas Industry 

 
Sources: Moody’s Analytics CreditEdge, AAA models 

 

Figure 8:  Credit Cycle Index and Forecasts for Global Technology Industry 

 
Sources: Moody’s Analytics CreditEdge, AAA models 

 

Deterministic scenarios:  In this case, one assumes that a particular scenario occurs and then derives the 

credit outcomes implied by it.  One may perform this exercise for a handful of distinct scenarios 

representing, for example, baseline, stress, and severe stress conditions.  If these exercises involve pre-

defined credit-factor paths, such as Z paths, then the process of determining credit outcomes is 

straightforward.  One merely enters the ∆Z paths into the transition model and the Z paths into the LGD 
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and EAD models.  However, in many cases including most importantly the regulatory stress tests, the 

predetermined scenarios specify paths not for aggregate-credit factors but for macroeconomic variables.  

Unfortunately, most of the predetermined macroeconomic variables that the regulators specify have only 

tenuous relationships to the wholesale credit cycle.  Thus, one must develop a further model bridging 

from the prescribed macroeconomic variables to the credit factors with proximate effects on PDs, LGDs, 

and EADs.  Building a credible bridge model is a non-trivial task and deserves a much lengthy discussion 

in itself.   

 

One can imagine using the bridge model along with several macroeconomic scenarios as an alternative to 

the time-series approach to estimating unconditional ECLs.  There are few, macroeconomic models 

available to credit institutions and none, to the author’s knowledge, have been used recently in 

developing large numbers of statistical scenarios.  With regard to judgmental scenarios, they have poor 

track records in part on account of psychological biases.   

 

In closing, the authors observe that, to estimate the probability weighted average of a facility’s lifetime 

credit losses accurately, one must account for the non-linear response of losses to the credit cycle.  This 

non-linear response reflects two phenomena:  the convexity of PD functions in the relevant range; and 

positive PD, LGD, EAD correlation.  Only by averaging the ECLs arising from many, joint, PD, LGD, EAD 

scenarios does one account for these non-linear effects. 

 

7 SUMMARY 

Unlike the Basel II rules, which call for the use of a TTC PD along with DT LGDs and EADs in the RWA 

formula, the regulatory stress test and the new IFRS 9 and proposed CECL accounting standards call for 

the use of PIT measures.  This paper describes approaches for developing PIT LGD and EAD models to be 

use together with PIT PD ones in developing ECL scenarios either for stress testing or for computing 

probability weighted average values for PIT ECL term structures.  To estimate this probability weighted 

result accurately, by accounting for non-linear responses of ECL to the cycle, one must run many, joint 

scenarios for PDs, LGDs, and EADs and average the resulting ECL scenarios. 
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