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Abstract 
Few banks have wholesale/commercial credit models that are point-in-time (PIT), tracking closely the 
sometimes large, cyclical variations in default and loss rates.1  Instead, most models at banks are “hybrid,” 
producing estimates more sensitive to the cycle than cyclically inert, through-the-cycle (TTC) ones, but 
less sensitive, typically much less so, than PIT ones.  The hybrid cases include most probability-of-default 
(PD) models arising from scorecards and scenario models featuring Z inputs related to hybrid-ratings, 
transition matrices (TMs).  Also, despite ample evidence that LGDs vary cyclically, many banks apply LGD 
models without systematic links to the credit cycle.  While no models produce perfect estimates, PIT 
models dominate hybrid ones in accuracy and so are essential in stress testing and IFRS-9 or CECL 
provisioning (see Figure 1).  Thus, banks urgently need to convert their hybrid models to PIT.   

 

 

Figure 1:  Back Tests Comparing PIT and Hybrid Model Estimates With Actual Values of US-Bank, C&I 
Charge-Off Rates Over 1997Q4-2018Q4:  Source: Author’s calculations using ZRE methods, Moody’s 
CreditEdge data, and US Federal Reserve data found at 
https://www.federalreserve.gov/releases/chargeoff/chgallsa.htm 

PIT, TTC, and hybrid models differ mainly in the cyclicality of their inputs.  To convert a hybrid or TTC 
model to PIT, one must add inputs that, along with existing ones, fully account for the credit cycle.  More 

 
1 To our knowledge, based on conversations with credit-risk modelers and developers globally and on our experience 
as reviewers of models at several institutions, only Barclays, the Royal Bank of Scotland (RBS), and DBS bank in 
Singapore have PIT credit models.  At Barclays and RBS, we ran the modeling teams that implemented methods for 
producing both PIT and TTC credit measures.  This PIT-TTC Framework was signed-off under each bank’s Basel II 
Waiver.  DBS has developed PIT models for wholesale/commercial credit by implementing AAA’s, Z-Risk Engine (ZRE) 
application.  In the Fall of 2017, DBS adopted ZRE as its strategic IFRS-9 solution for wholesale and commercial 
portfolios (see joint DBS-AAA Z-Risk Engine Press Release, October 9th, 2017).  In all three of these cases, the PIT 
credit-cycle indices integral to the PIT PDs, LGDs, and EADs arise either from ZRE or methods equivalent to those 
implemented by ZRE.  Most other institutions have models involving close-to-TTC inputs. 
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frequent updating of hybrid or TTC inputs would improve estimation of the relative risk of different 
exposures.  But this would have little effect on estimates of cyclical variations in absolute risk.  

We estimate below the magnitudes of the inaccuracies arising from credit models with “PIT-ness” of 25%, 
about the same as S&P and Moody’s ratings.  PIT-ness measures the cyclical amplitude of a credit model’s, 
consolidated input relative to a PIT input.  A PIT model has PIT-ness of 100%; a TTC model 0%; and a hybrid 
model between 0% and 100%.  The hybrid, PD/TM, loss-given-default (LGD), and exposure-at-default 
(EAD) models in the trials below are all 25% PIT.    

For estimates as of 31 Dec 2018, the 25%-PIT, hybrid models overstate the lifetime, expected credit loss 
(ECL) of a portfolio representative of US, commercial and industrial (C&I) loans by 17%.  The over 
estimation occurs, because credit-cycle conditions were better than average at yearend 2018.  Hybrid 
inputs under represent this beneficial cycle both initially and, with diminishing magnitudes, subsequently 
over the lifetimes of loans.    

In the CCAR-2019, severely-adverse (SA) scenario, with mark-to-market (MtM) asset values, credit 
spreads, and GDP as macroeconomic-variable (MEV) drivers, the same, hybrid models understate the rise 
in charge-off rates relative to the baseline by 85%.  In this case, the hybrid inputs grossly under estimate 
the deviations between stress and baseline, credit-cycle conditions.   

In quarterly back tests comparing model estimates with actual, charge-off rates on US-bank, C&I loans 
over 1995-2018, the hybrid models substantially under estimate losses in the 2001-02 and 2008-09 
recessions and over state them in most, other periods.  Here, the hybrid inputs move up and down 
cyclically much less than past, PIT inputs.  While the models drawing on PIT inputs over state losses during 
the 2003-06 recovery, they dominate the hybrid models in overall accuracy since 1995. 

The results here resemble those in our earlier ZRE paper focusing on errors caused by non-PIT, MEV drivers 
in scenario models.2  In the ZRE paper here, the shortfalls in stress relative to baseline losses trace to non-
PIT, credit-model inputs.  In the earlier paper, the credit-model inputs were PIT, but the shortfalls 
occurred, because the MEV-based estimates of the inputs had far less cyclicality than the inputs 
themselves.  

To eliminate avoidable inaccuracies, banks could supplement hybrid-model inputs with credit-cycle 
indices (CCIs) derived from listed-company, PIT PDs.  Several vendors offer such PDs.  With ample data, 
one might determine the model sensitivities to the CCIs by re-estimating the models with the CCIs 
included as additional explanatory variables.  With sparse data, one might assign sensitivities the same as 
those estimated in other, comparable cases.  In either event, with the CCIs as inputs, the models would 
provide substantially more accurate, near-PIT estimates.   

Outline of Paper 
We start by explaining the way in which hybrid models differ from PIT ones and we present evidence that 
many banks are struggling with producing PIT estimates.  Then we introduce the CCIs that this paper uses 
in producing PIT outputs.  We compare the cyclicality of those CCIs with that of a consolidated, 25%-PIT 
input.  Next, we describe the models that we use in  

 
2 See https://www.z-
riskengine.com/media/1115/zre_scenario_models_without_pit_drivers_understate_wholesale_credit_losses.pdf.  
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• estimating lifetime ECLs,  
• determining baseline and stress losses, and  
• conducting back tests.   

We also explain the model modifications that lead to 25%-PIT outputs.  Following that, we present the 
trial portfolio, which is structured to be representative of US bank, C&I loans.  Next, we describe the trial 
results, which reveal the inaccuracies caused by hybrid models.  Last, we explain how to convert hybrid 
models to PIT.  Appendices include more detailed descriptions of the models in the trials. 

Hybrid Inputs Produce Hybrid Outputs 
PIT models respond fully to the credit cycle; TTC models respond not at all.  Most credit models at banks 
are hybrid, intermediate to PIT and TTC, but often closer to TTC.   

Credit models involve formulas that translate risk inputs into PDs, LGDs, and EADs.  The formulas, often 
cumulative-probability-distribution functions (CDFs), are typically the same regardless of whether the 
inputs are near PIT or close to TTC.  Near-PIT inputs produce near-PIT outputs.  Near-TTC inputs produce 
near-TTC outputs.   

Consider a Probit PD model.  The standard-normal CDF translates inputs into PDs.  If the inputs were PIT, 
the PDs would be so.  If the inputs were hybrid, the PDs would be hybrid. 

As another hybrid example, consider the conditional-TM model that several banks use in running credit 
scenarios.  Under an approach introduced by Forest, Belkin, and Suchower (1998), one imputes, for each 
sector with a sufficiently large ratings sample, a r parameter and credit-cycle, Z indices from time series 
of tabulated TMs.  Then, one determines, for each sector with its own TMs, a statistical relationship 
between MEVs and historical Zs.  One uses that relationship in translating MEV scenarios into Z ones.  For 
each sector, those Z scenarios, entered along with r into the same TM model used in imputing Zs, produce 
PD scenarios. 

Unfortunately, the ratings underlying TMs are typically closer to TTC than PIT.  This includes ratings from 
S&P and Moody’s (Forest L., Chawla G. and Aguais S. D., 2015) and from scorecard models at banks (Levy 
and Zhang, 2018).  Thus, the PDs arising from this TM model will understate cycles in default rates (DRs).  

Some mistakenly believe that, to get a PIT model, one merely needs to keep the inputs current.  In scenario 
models, one accomplishes this by estimating the inputs on the basis of the assumed, MEV paths.  This 
doesn’t make the results PIT.  On the contrary, PIT models differ from hybrid and TTC ones mainly in the 
cyclicality of inputs, not in the promptness of updating. 

Further, one can’t repair the underestimation of cyclicality by manually increasing the sensitivities of 
credit-model outputs to inputs.  Those sensitivities arise mainly from an effort to explain the very large, 
cross-sectional variations in the relative risks of borrowers and exposures and only secondarily from an 
attempt to explain the smaller, inter-temporal variations.  Thus, manually increasing the input sensitivities 
would impair the overall, cross-sectional and inter-temporal explanation of credit risk.   Instead, one needs 
to supplement existing, mostly relative-risk inputs with cyclical ones that determine the changing 
magnitudes of broad-based, absolute risk. 
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Evidence Indicates that Many Banks Today Can’t Produce Credible, PIT Estimates 
A recent benchmarking study from Global Credit Data (2019) indicates that many banks are unable to 
produce credible, PIT estimates.  The ECL estimates from the participating banks for a common, 
hypothetical portfolio differ substantially, with third- and first-quartile values varying by 4x.  As a further 
example, the study includes a case in which the banks provide estimates of a five-year, PIT-PD, term 
structure for a UK borrower in manufacturing with a one-year TTC PD of 75 bps.  The reported five-year, 
PIT PDs vary by a factor of 7! 

Industry and Region CCIs Used in the Trials 
The models below feature industry and region CCIs as the factors that describe the credit cycle and, when 
entered as inputs into PD, TM, LGD, and EAD models, yield PIT outputs.  These CCIs derive from the listed-
company PDs produced by a Merton-type, PIT, default model.  In this paper, we draw on the Moody’s 
CreditEdge model.  Other vendors of such models include Kamakura, S&P, Bloomberg, and the Credit 
Research Initiative of the National University of Singapore. 

We first develop industry and region, default-distance-gap (DDGAP) indices by 

• calculating, for each industry and region, the time series of median PDs, 
• applying, to each median PD, the inverse-normal CDF and multiplying the result by negative one, 

thereby obtaining a series of median, default distance (DD) measures, and 
• subtracting the 1990-to-date, average value of median DDs, thereby deriving DDGAPs. 

After that, we obtain industry and region, Z indices by 

• calculating the standard deviations of annual and quarterly changes in DDGAPs, and 
• dividing the DDGAPs by the standard deviations of annual and quarterly changes, thereby 

producing Zs scaled, respectively, for quarterly and annual models. 

In some cases, this process yields DDGAPs and Zs that exhibit a trend, evidently reflecting accreting 
changes in the TTC composition of the underlying, listed-company sample.  If so, we estimate linear time 
trends and subtract them from the DDGAPs and Zs described above.   This yields entirely cyclical, trendless, 
DDGAP and Z series.   

In running quarterly PD scenarios, we enter, into one-quarter-horizon, TM/PD models, quarterly changes 
in quarterly-scaled, Z indices.  An annual PD model would require annually-scaled Zs.  Such scaling 
differences have no effect on LGD and EAD estimation.  The related models configured either for annually 
or quarterly scaled Zs produce the same results.  LGDs and EADs occur at a point in time (the default time) 
and vary depending on the state of the credit cycle at that time.  Defaults in contrast occur over an interval 
of time and, given that the obligor DDs are known as of the start of the interval, vary depending on the 
change in the cycle during that interval.  Holding creditworthiness fixed, shorter intervals imply lower PDs 
and higher values for the levels and one-period changes in DDs, DDGAPs, and Zs. 

The PIT and hybrid DDGAPs intrinsic to the trials differ only in cyclical amplitude (Figure 2).  The changes 
and levels of hybrid DDGAPs have standard deviations only 25% as great as those of PIT DDGAPs.  
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Figure 2: Comparison of PIT and 25%-PIT DDGAPs; Source:  Authors’ calculations applying ZRE methods 
to Moody’s Credit Edge data and CCAR-2019 Severely-Adverse-Scenario assumptions  

Models Used in the Trials 
The trials below involve three, overlapping models with the same PD/TM, expected LGD (ELGD), and 
expected EAD (EEAD) functions and the same Z inputs into those functions.  The first one (ECL Model) 
estimates one-year and lifetime ECLs unconditionally, without assuming anything restrictive about the 
evolution of systematic and idiosyncratic, credit factors.  The second (Scenario Model) estimates ECLs 
conditionally, with systematic, credit factors evolving in the way predicted by assumed paths for selected 
MEVs.  The third (Back Test Model) is the same as the Scenario Model, except that it leaves out the MEV-
based estimation of Zs and instead enters, as the systematic-risk inputs into the PD, LGD, and EAD models, 
actual, historical, Z values.   

In each trial, we run the ECL, Scenario, or Back Test Model twice:  once formulated to produce PIT 
estimates and once to produce hybrid, 25%-PIT estimates.  We convert from PIT to 25% PIT by multiplying 
the coefficients applied to the relevant CCIs in the PIT models for TM/PD, LGD, and EAD by 25%.  This 
reduction in coefficient magnitudes has an effect equivalent to reducing the cyclical amplitudes of the 
credit-cycle inputs.  Thus, the DZ inputs into the PIT and hybrid, TM/PD models are the same in both the 
PIT and hybrid runs, but, due to the different coefficients applied to those DZs, the outputs are PIT and 
hybrid, respectively.  

Only the CCIs appear explicitly as variables affecting prospective, credit losses. Under conventional 
assumptions, the inputs explaining borrower- or facility-specific effects either remain constant (LGD and 
EAD models) or evolve randomly (PD/TM models).  Further, the descriptions of the facilities in the trials 
specify TTC values for PDs, ELGDs, and expected-credit-conversion-factors (ECCFs).  These TTC values, 
along with the assumptions of either constancy or random evolution, pin down the specific effects.  

The ECL Model  

• runs joint, quarterly, Monte Carlo simulations of the Zs for each valid, industry and region pair,  
• combines the Z simulations for each pair and produces industry-region, Z simulations, 
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• enters those industry-region, Z simulations into conditional, TM, LGD, and EAD models, and 
thereby derives ECL simulations for each facility in the trial portfolio, and 

• averages the quarterly ECL simulations for each facility and, applying each facility’s effective 
interest rate (EIR) in discounting, produces one-year and lifetime ECLs. 

The Scenario Model  

• starts with assumed, quarterly scenarios for selected MEVs, 
• transforms the MEV scenarios into MEV-Z ones, 
• enters the MEV-Z scenarios into a bridge model and thereby generates the industry and region, Z 

scenarios implied by the MEV ones, 
• combines the Z scenarios for each, valid, industry and region pair and produces industry-region, 

Z scenarios,  
• enters the industry-region Z scenarios into PD, LGD, and EAD models for each facility and thereby 

creates quarterly, conditional ECLs for each facility. 

The Back Test Model 

• draws on past Zs for each of the industry-region sectors, and 
• enters the relevant Zs quarterly into the Scenario Model’s PD, ELGD, and EEAD functions for each 

facility in the trial portfolio and thereby estimates, for the portfolio as a whole, past, quarterly 
values of defaults, specific provisions, charge offs, and charge-off rates. 

More detailed descriptions of the ECL and Scenario Model appear in Appendices 1 and 2. 

Description of the Trial Portfolio 
The trial portfolio includes a mix of sectors (Table 1) and facilities (Table 2) designed to be representative 
of US bank, C&I loans.  For simplicity, the facilities are the same for each, industry-region sector.  The 
portfolio has an annualized, TTC, charge-off rate of 77 bps.  This is the same as the US bank, annualized, 
C&I, net-charge-off rate on average over 1990-2018. 

Table 1:  Industry-Region Sectors Used in the Trials 

Industry Region1 Proportion 
Aerospace and Defense North America (non-FI) 1% 
Banking North America FI 5% 
Basic Industries North America (non-FI) 5% 
Business and Consumer Services North America (non-FI) 20% 
Chemicals and Plastic Products North America (non-FI) 2% 
Construction North America (non-FI) 10% 
Consumer Products North America (non-FI) 2% 
Finance, Insurance, and Real Estate North America FI 10% 
Hotels and Leisure North America (non-FI) 5% 
Machinery and Equipment North America (non-FI) 3% 
Media North America (non-FI) 5% 
Medical North America (non-FI) 5% 
Mining North America (non-FI) 1% 
Motor Vehicles and Parts North America (non-FI) 5% 
Oil and Gas North America (non-FI) 3% 
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Retail and Wholesale Trade North America (non-FI) 6% 
Metals North America (non-FI) 4% 
Technology North America (non-FI) 4% 
Transportation North America (non-FI) 3% 
Utilities North America (non-FI) 1% 
All  100% 
1 North America º US and Canada 

 

Table 2: Attributes of Facilities Within Each Industry-Region Sub-Portfolio 

Weight 
TTC 

Grade 
Facility 
Type1 

Limit 
$s mm 

Maturity 
in Years  EU2 PD TTC3

 

ELGD 
TTC4

 

ECCF 
TTC5

 EIR6 

10% A 
RCF 30 1.0 10% 

0.05% 
40% 75% 3.00% 

TL 30 1.0 100% 40% 100% 3.00% 

25% BBB 
RCF 30 2.0 20% 

0.17% 
40% 45% 3.30% 

TL 30 2.0 100% 40% 100% 3.30% 

45% BB 
RCF 30 3.0 30% 

0.72% 
35% 45% 4.00% 

TL 30 3.0 100% 35% 100% 4.00% 

15% B 
RCF 30 3.0 30% 

4.04% 
30% 45% 5.00% 

TL 30 3.0 100% 30% 100% 5.00% 

5% CCC 
RCF 30 2.0 50% 

22.63% 
25% 45% 6.00% 

TL 30 2.0 100% 25% 100% 6.00% 
100% All All 607 2.5 63% 2.11% 27% 73% 3.98% 

1 RCF º revolving credit facility; TL º term loan. 
2 EU º expected utilization of credit line other than in default. 
3 PD TTC º annual TTC PD º annual PD conditional on Z = Z-norm. 
4 ELGD TTC º expected value of LGD conditional on Z = 0. 
5 ECCF TTC º expected value of CCF conditional on Z = 0. 
6 EIR º effective interest rate. 
7 Calculated as a weighted sum of limits, with the weights in the left-hand column distributed 
evenly to the associated, RCF and TL facilities.  Thus, in the case of the A-graded obligor, the 10% 
weight gets distributed 5% to the RCF and 5% to the TL. 

 

In the ECL Model, the attributes in Table 2 describe the trial facilities as of the start date, 31 Dec 2018.   In 
the Scenario and Back Test models, those attributes describe the performing facilities at the start of each 
quarter in the scenario or back test.    

The ECL Model estimates ECLs over the life of each loan.  This multi-step exercise involves the entire TM.  
The Scenario and Back Test models, in contrast, run a series of one-quarter estimates for a static-TTC-
attribute portfolio.  This sequence of single-step problems involves only the PD column of the TM. 

Results of the Trials 
We present below the comparative results of using, respectively, PIT and hybrid models in  

• estimating the ECLs needed for establishing provisions under IFRS 9 or CECL,  
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• running baseline and stress, credit-loss scenarios, and 
• conducting back tests over 1997Q4 to 2018Q4. 

One-Year and Lifetime ECLs:  Hybrid and PIT 
Starting on 31 December 2018, the hybrid, 25%-PIT estimates of the trial portfolio’s one-year and lifetime 
ECLs exceed the PIT values by 21% and 17%, respectively (Table 3).  Credit conditions at the end of 2018 
were moderately positive, with a weighted average Z value (annual scaling) of about 0.67.  The hybrid 
model understates the beneficial effect of this above-average setting.  While mean reversion in Zs causes 
the hybrid model’s underestimation of cycle effects to diminish over time, the effects during the 
simulations are still on balance biased down. This downward bias in beneficial, cyclical influences 
produces an upward bias in PDs and ECLs. 

Table 3:  One-Year and Lifetime ECLs for the Trial Portfolio as Estimated by PIT and Hybrid Models 

As of Date 
Model ECL (% of Book Value) Ratio Hybrid to PIT 

Type PIT-ness One Year Lifetime One Year Lifetime 

31 Dec, 2018 
PIT 100% 0.49% 1.26% 

1.21 1.17 
Hybrid 25% 0.59% 1.47% 

Source:  ZRE application drawing on Moody’s CreditEdge data. 

The bias caused by hybrid inputs varies with the state of the cycle at the time of lifetime-ECL estimation 
(Figure 3).  If the initial Zs and DDGAPs are close to the cycle-neutral value of zero, the bias is small.   If 
initial Z and DDGAP values are substantially positive (negative), the bias is substantially negative (positive).  
The ECL Model’s, Z equations include, as explanatory variables, Z values lagged both one and two quarters.  
In the estimates summarized in Figure 3, the initial Zs are set to the same values in all sectors in both of 
the two, most recent quarters.  

  

 

Figure 3:  Ratio of Hybrid to PIT, Lifetime ECLs Under Varying, Initial, Credit-Cycle Conditions: Source:  
ZRE application drawing on Moody’s CreditEdge data. 
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As an extreme example, consider the errors in the hybrid estimates as of 2009Q1 when the weighted 
average, Z-index value was -3.41.  For the trial portfolio at that time, the hybrid-model estimates a lifetime 
ECL of 2.32% of book value.  This falls short of the 6.97% PIT estimate by 67%. 

The cases just discussed involve over- or under-estimation broadly across all sectors.  Other circumstances 
involve sectoral errors of dissimilar magnitudes and possibly different, arithmetic signs, with this 
potentially leading to poor, origination and portfolio-management decisions.  One sees such non-
homogeneity most often in comparing commodity-producing industries with other sectors less sensitive 
to volatile, commodity prices (Figure 4).  For example, in 2016Q1, following a sharp drop in crude oil prices 
to less than $40 per barrel, the Z index for the North American, oil-and-gap industry had a value of 
negative 1.10.  At the same time, the Z for North American, technology firms had a value of positive 0.55.  
From Figure 3 one can see that the 25%-PIT model’s estimates of lifetime ECLs in 2016Q1 would have 
been biased down by roughly 35% for oil-and-gas firms and up by almost 10% for technology businesses.  
The almost 45% error in comparative provisioning would have contributed to an unduly favorable 
assessment of oil-and-gas companies relative to technology firms.  

 

 

Figure 4: Comparison of North American Z Indices in Technology and Oil & Gas; Source: Authors’ 
calculations using ZRE methods and Moody’s, CreditEdge data 

CCAR 2019 Severely Adverse Relative to Baseline Results:  Hybrid and PIT 
The hybrid model understates stress relative to baseline losses by a large amount (Figure 5).  Under the 
PIT model with MtM asset values, credit spreads, and GDP as MEV drivers, charge-off rates in the CCAR-
2019, severely adverse (SA) scenario rise on balance above baseline values during the 13 scenario quarters 
by 116 bps.  Under the hybrid model with the same, MEV drivers, charge-off rates in the SA scenario rise 
on balance over baseline values over the entire scenario by 17 bps, about 85% less than PIT values.  Under 
a hybrid model with GDP as the only MEV driver, the average gap between SA and baseline charge-off 
rates during the scenario interval reaches only 5 bps, an underestimate of almost 95%.   

Over the one-year period with the highest, SA, charge-off rates during the scenario, the PIT gap between 
SA and baseline charge-off rates stands at 199 bps.  Under the hybrid model with the same MEV drivers, 
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that gap reaches 28 bps, again about 85% less than the PIT value.  Under the hybrid model with only GDP 
as a MEV driver, the gap is about 11 bps, 95% less than the PIT value. 

 

 

Figure 5:  Annualized Charge-Off Rates Relative to Baseline Values: CCAR SA Scenarios Under 
Alternate Models:  Source:  Authors’ calculations using ZRE methods and Moody’s CreditEdge data. 

Stress scenarios involve cyclical downturns of large size, with Z values falling far into the negative range.  
Consequently, the hybrid CCIs in stress scenarios include large errors and so the hybrid estimates of PDs 
and ECLs are highly inaccurate.  In contrast, the end-of-2018 estimates of unconditional ECLs involve Z 
values that start and, in the projections, mostly remain in the moderate range.  Thus, the hybrid estimates 
of PDs and ECLs are moderately inaccurate.  However, if today’s credit conditions were severely depressed 
(or extremely strong), the hybrid estimates of unconditional ECLs would by highly inaccurate. 

Back Tests Over 1997Q4-2018Q4:  Hybrid and PIT 
In back tests over 1997Q4-2018Q4, the PIT model explains US, C&I charge-off rates much better than the 
25%-PIT, hybrid model (Figure 1).  These trials involve a sequence of one-quarter projections, each 
conditional on end-of-quarter values of the industry-region Zs.  In the hybrid model, we again mimic 
inadequate cyclicality of inputs by adjusting down the model coefficients applied to the Z indices.  In the 
PIT case, the trials test the accuracy of the Z indices as cyclical indicators explaining systematic variations 
in C&I loan charge-offs. 

The hybrid model exaggerates losses in good times (2011-2018) and grossly underestimates them in 
recessions (2001-02, 2008-09).  Due to its under representation of the cycle along with the convexity of 
the relationship between inputs and losses, the hybrid model understates, by 12 bps, the long-run 
average, annualized, charge-off rate of 77 bps.  While the PIT model based on Zs derived from CreditEdge 
EDFs is imperfect in explaining past, C&I, loss rates, it performs extremely well in tracking the 2008-09 
downturn and reconciles almost exactly with the long-run-average charge-off rate.  Due in part perhaps 
to technology companies having greater weight in the CreditEdge sample than in US-bank, C&I loans, the 
PIT model overstates charge-offs during and after the 2001-02 downturn.  But since 2005, the PIT model 
explains variations in charge-off rates well, much better than the hybrid model. 
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Converting Hybrid Models to PIT 
To convert hybrid or TTC models to near-PIT, one needs to add inputs that track the credit cycle.  One may 
accomplish this by including in the credit models CCIs of the type used in the trials above.   We’ve done 
this in past work and have found that this sharply improves the goodness-of-fit with the gains occurring 
in the explanation of inter temporal variations in defaults and losses. 

In some cases, banks have too little data to support statistical estimation of a model’s PIT-ness, but this 
need not stop the bank from specifying a credible, PIT model.  In the absence of sufficient data, the bank 
could set the CCI sensitivity of a credit model to that already estimated for another “comparable” model.  
Suppose, for example, the PDs for a bank’s corporate borrowers were inferred from grades established 
by a process comparable to that used by S&P or Moody’s in determining ratings.  In this case, one might 
assume that those PDs had a PIT-ness of 25%, about the same as S&P and Moody’s ratings.  In that case, 
the CCIs would have a weight of 75% in the associated, Probit PD model.  The ZRE application draws on 
such PIT-ness parameters, provided in a configuration file, and runs the same regardless of the way one 
determines the PIT-ness of legacy models.  

Summary 
Few banks have wholesale/commercial, credit models that include the PIT inputs needed to obtain 
accurate estimates of defaults and losses.  Instead, most models at banks involve hybrid inputs, which 
move with the cycle, but less so, usually much less so, than PIT ones.  Such models produce inaccurate 
estimates of ECLs.   

For a portfolio representative of US bank, C&I loans, we estimate that hybrid, TM/PD, LGD, and EAD 
models with PIT-ness of 25%, would, as of 31 Dec 2018, overestimate the portfolio’s lifetime ECL by 17%.  
Alternatively, if credit conditions were as in Mar 2009, at the bottom of a deep recession, the hybrid 
models would underestimate the trial portfolio’s lifetime ECL by 67%.  Thus, hybrid-model errors are small 
if credit-cycle factors are close to their long-run average and large if those factors are far above or below 
average.  

In stress scenarios, the hybrid-model errors are very large, because those scenarios assume that credit-
cycle conditions decline to far below average.  For the portfolio representative of C&I loans, we find that, 
under the CCAR-2019, SA scenario, the hybrid model understates the rise in charge-off rates over baseline 
values by about 85%.  

In back tests comparing model estimates with realized, C&I loss rates over 1997Q4-2018Q4, the PIT model 
dominates the hybrid model.  The hybrid model grossly under estimates charge-offs in the 2001-02 and 
2008-09 recessions and over estimates them in the mostly benign, 2011-2018 period.   While not perfect 
by any means, the PIT model provides much more accurate estimates, particularly in downturns.  

Thus, banks urgently need to revamp any models relying on hybrid inputs.  This includes most PD models 
based on scorecard grades and scenario models featuring Z inputs imputed from hybrid-ratings TMs. 
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Appendix 1:  ECL Model  
This model runs quarterly Monte Carlo simulations for each valid, industry and region pair.   This starts 
with the random selection of correlated shocks using the formulas (1) 

 
𝜀",$%& = 𝑢&,$%&

𝜀),$%& = 𝜌",)+ 𝑢&,$%& + -1 − 0𝜌",)+ 12𝑢2,$%&
 (1) 

   
Here, 𝜀",$%&denotes the industry innovation at time t+1, 𝜀),$%&the region innovation at time t+1,	𝑢&,$%& a 
standard-normal, random variable,	𝑢2,$%& another standard-normal random variable, and 𝜌",)+ 	the 
correlation coefficient between industry and region innovations.  The formulas above merely amount to 
a principal-components or Cholesky decomposition of two, unit-normal, correlated random variables. 

The randomly selected innovations and the industry and region Zs in the most recent, past two quarters 
enter into further simulated values of Zs as determined by the formulas (2) 

	

𝑍",$%& = 𝑧",$%& + 𝑍",$
𝑧",$%& = −𝑚&,"𝑍",$ + 𝑚2,"𝑧",$ + 𝜎"𝜀",$%&
𝑍),$%& = 𝑧),$%& + 𝑍),$
𝑧),$%& = −𝑚&,)𝑍),$ + 𝑚2,)𝑧),$ + 𝜎)𝜀),$%&

	 (2) 

   
Here	𝑍",$%&	denotes the Z for industry  I at time t+1, 𝑧",$%& the one-quarter change in that Z at time 
t+1,	𝑍),$ the Z for region R at time t, 𝑧),$%& the one-quarter change in that Z at time t+1, 𝑚&," the mean-
reversion coefficient for industry I,	𝑚2," the momentum coefficient for industry I, 𝑚&,)	the mean-
reversion coefficient for region R, 𝑚2,)the momentum coefficient for region R, 𝜎" the standard deviation 
of innovations in industry I, and 𝜎)the standard deviation of innovations in region R. All of the Zs and 
parameters in these formulas and the others below involve scaling for a quarterly model.  The parameters 
arise from statistical estimation using historical data.   

The model next combines the industry and region Zs for each valid, industry-region pair using the formula 
(3) 

 𝑍",),$ =
𝑤"𝑠"𝑍",$ + (1 − 𝑤")𝑠)𝑍),$

-𝑤"2𝑠"2 + (1 − 𝑤")2𝑠)2 + 2𝑤"(1 − 𝑤")𝜌",)𝑠"𝑠)
 (3) 

   
In  (3), 𝑍",),$ denotes the Z value at time t for the composite of industry I and region R, 𝑤" the optimal 
weight, based on historical estimation of listed-company, DD changes, for combining industry-I’s DDGAPs 
with regional ones,	𝑠" the historical standard deviation of one-period changes in industry-I DDGAPs,	𝑠)  
the historical standard deviation of one-period changes in region-R DDGAPs, and	𝜌",)  the correlation 
coefficient between industry-I and region-R, one-quarter Z changes.  

The model simulates quarterly TMs by entering the quarterly, industry-region Z changes into a Probit TM 
model (formula (4)). 
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 𝑇𝑀(𝑔, ℎ|𝑧$) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
1 																																																																				𝑖𝑓	𝑔 = 𝐷, ℎ = 𝐷
0 																																																																				𝑖𝑓	𝑔 = 𝐷, ℎ < 𝐷

ΦL
𝐵N,O − P𝜌𝑧$
P1 − 𝜌

Q 																																						𝑖𝑓	𝑔 < 𝐷, ℎ = 𝐷

1 −ΦL
𝐵N,R%& − P𝜌𝑧$

P1 − 𝜌
Q 																											𝑖𝑓	𝑔 < 𝐷, ℎ = 1	

ΦL
𝐵N,R − P𝜌𝑧$
P1 − 𝜌

Q − ΦL
𝐵N,R%& − P𝜌𝑧$

P1 − 𝜌
Q 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

   
Here 𝑇𝑀(𝑔, ℎ|𝑧$) denotes the probability of migrating from integer grade g to h conditional on the 
indicated, industry-region z value,	Φ the standard-normal CDF, D the integer grade corresponding to 
default, 𝐵N,O the (negatively signed) default threshold for grade g, 𝜌 the systematic (z) factor’s proportion 
of the variance of systematic plus idiosyncratic factors, and 𝐵N,R the threshold for migration from grade g to 
h or worse (with higher integer values indicating higher default risk).  The PIT values of r for each industry-
region sector derive from the variances of the related DDDGAPs.  In the hybrid estimations, we set the 
value of r for each industry-region segment to 0.0625 (= 0.252) times the PIT value.  

Under the assumption that z has a standard normal distribution, then by integrating out the z dependency 
in (4) and assuming that historical average migration rates approximate the theoretical averages, one 
obtains the following formula for the threshold parameters 

 
𝐵N,R = ΦW& XY𝑇𝑀(𝑔, 𝑘)

[\R

] (5) 

   
In (5)	𝑇𝑀(𝑔, 𝑘) denotes the historical average migration rate from grade g to k.  Thus, one calibrates the 
thresholds by applying the inverse-normal CDF to the related, partial row sums of long-run average 
migration rates.   

We obtain the long-run-average TM underlying this model by a three-step process.  In step one, we form 
a weighted average of CreditEdge, Moody’s, and S&P, long-run average, annual TMs.  In step two, we 
adjust the elements of this average, empirical TM so as to obtain the best fit, subject to constraints, to the 
average of S&P and Moody’s, long-run average, default rate term structures by grade.  The constraints in 
the optimization ensure that the PDs rise as ratings get worse, that all TM cells have positive values, and 
that total, up and down migration rates by grade remain close to empirical values.  Last, we derive a 
generator for the step-two TM and use that in forming a quarterly, long-run-average TM. 

By multiplying the quarterly, conditional TMs in a simulation and selecting from the default column of the 
resulting product matrices, the model calculates PDs over varying terms for each initial grade g. 

 

𝑃𝐷(𝑔, 𝑡 + 𝑛|𝑧$%&, … , 𝑧$%a) = bc𝑇𝑀(𝑧$%d)
a

de&

f [𝑔, 𝐷]

𝑇𝑀(𝑧$%d) = b 𝑇𝑀(𝑔, ℎ|𝑧$%d) f

 (6) 
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In (6), 𝑃𝐷(𝑔, 𝑡 + 𝑛|𝑧$%&, … , 𝑧$%a))  denotes the cumulative probability of default from time t to t + n under 
the indicated z scenario for an obligor with an initial grade of g, P cumulative, matrix multiplication, and 
𝑇𝑀(𝑧$%d) the TM conditional on the given value of the systematic factor at time t+m.  Observe that the 
bracketed term [g, D] to the right of the bigger brackets in the top line of (6) denotes selection of the value 
in the gth row and Dth column of the matrix formed as a product of single-period TMs.  This cell contains 
the cumulative probability of default for an initial grade of g.  

At this point, the model has simulated, PD term structures for each of 16, discrete grades.  We extend that 
resolution to the continuum of all possible values of initial creditworthiness by using spot, one-year PDs 
in interpolating between 18, discrete, PD term structures.  The 18 settings include the 16 grades appearing 
in the TM plus a default (D = 100% PD) grade and a risk-free (no default = 0% PD) grade. 

In almost all cases, an obligor has a spot PD that falls between the spot PDs of two of the 18, discrete 
grades.  If so, to derive the obligor estimate, one interpolates between the pair of term structures in a 
simulation for the grades with spot PDs just above and below the obligor’s, spot PD.  As an example, 
suppose that the obligor’s, spot PD at a one-year horizon sits half way between the one-year, spot PDs for 
model grades 5 and 6.  Then, accepting the spot PD as the relevant indicator for this interpolation, we’d 
estimate the obligor’s cumulative-PD term structure by averaging the grade-5 and grade-6 term 
structures. 

More generally, we form a weighted average of the term structures of the two grades, A and B, with one-
year, spot PDs closest above and below that of the obligor.  We determine the weights as follows in (7): 

 𝑤i =
𝑃𝐷jk − 𝑃𝐷lk

𝑃𝐷ik − 𝑃𝐷lk
𝑤l = 1 − 𝑤i

 (7) 

   
In (7) 	𝑤idenotes the weight on the grade-A term structure,	𝑤l the weight on the grade-B term structure, 
𝑃𝐷jk the one-year spot PD of the obligor, 𝑃𝐷ik the one-year spot PD of the grade A with spot PD closest 
above the obligor, and 𝑃𝐷lk the one-year spot PD of the grade B with spot PD closest below the obligor. 

Coming out of the interpolation, the model has simulated, PD term structures for each facility in the trial 
portfolio.  The model then produces the accompanying, jointly simulated, ELGD and EEAD values using 
the formulas (10), (11), and (12) in Appendix 2 below. 

Now, having jointly simulated quarterly values of PDs, ELGDs, and EEADs, the model calculates ECLs as in 
(8) below: 

 

𝐸𝐶𝐿(𝑓, 𝑡 + 𝑛) = Y
𝐸𝐶𝐿(𝑘, 𝑓, 𝑡 + 𝑛)

𝐾

q

[e&

𝐸𝐶𝐿(𝑘, 𝑓, 𝑡 + 𝑛) = D𝑃𝐷 r𝑓, 𝑡 + 𝑛|𝑧[,$%&(𝑓), … , 𝑧[,$%a(𝑓)s

																																∙ 𝐸𝐿𝐺𝐷0𝑓, 𝑍[,$%a(𝑓)1 ∙ 𝐸𝐸𝐴𝐷0𝑓, 𝑍[,$%a(𝑓)1

 (8) 

   
Here k indexes simulations and f facilities, which in turn identify obligors, the associated, initial, spot PDs, 
and the relevant, industry-region sectors.  Each facility’s obligor’s spot PD and sector identify a set of PD 
and DPD simulations.  And the facility has other attributes that together with the sector Zs determine the 



September 2019 

16 
 

ELGD and EEAD simulations occurring jointly with the PD ones.  By averaging the joint, DPD, ELGD, and 
EEAD scenarios in (8), the model produces the quarterly unconditional ECLs for each facility. 

 
Appendix 2:  Scenario Model  
In each scenario, this model assumes that selected MEVs remain on specified paths and that industry and 
region Zs remain on the expected-value paths implied by the MEVs.  In each scenario, we run the model 
twice, using PIT and hybrid inputs into the PD model.  

The scenario model has (up to) three, MEV drivers:  stock prices, credit spreads, and GDP.  The model 
transforms each of these MEVs into Z indices.  The stock-price, credit-spread, and GDP transformations 
occur as described below.  

The model derives an asset-value Z, denoted ZA by 

• forming an AR(1) moving average of quarterly, S&P500, stock-price-index values,  
• taking natural logarithms of one plus the quarterly ratios of the stock-price index to its moving-

average,  
• subtracting the 1990-to-date, average value of the logarithmic ratio, thereby producing a cycle-

gap measure, and 
• dividing by the standard deviation of annual changes in the cycle-gap measure. 

The ZA series shows a small cyclical decline in 1991 and large drops in 2001-02 and 2007-08 (Figure 6). 

   

Figure 6:  US ZA Series for 1990Q1 to 2018Q4. Source:  Authors’ calculations using S&P 500 price series 
obtained at https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC 

Division by a moving average approximates the effect of forming the ratio of MtM equity to non-financial-
corporate liabilities.  Then, by adding one, the equity/liability ratio becomes an asset-value/liability one.  
Over 1990Q1-2018Q4, an AR(1) moving average of the S&P index with coefficient of 0.07 achieves the 
maximum correlation coefficient of about 99.7% with US, non-financial-corporate liabilities.  

The model derives the credit-spread Z, denoted ZS, by 
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• taking the negative of the inverse normal of the BBB spread divided by 0.6, thereby obtaining a 
DD indicator, 

• calculating an AR(1) moving average of the DD series, using an AR(1) coefficient of 0.07, 
• deducting the moving averages from the DDs, thereby obtaining a DDGAP series, and 
• subtracting the 1990-to-date average value of the DDGAP series and dividing by the standard 

deviation of annual changes in the DDGAP series, thereby producing a Z series. 

The ZS series shows a small cyclical decline in 1991, modest drops in 1997-98 and 2000-01, and a very 
large fall in 2007-08 (Figure 7). 

   

Figure 7: US ZS Series for1990Q1 to 2018Q4.  Authors’ calculations drawing on Moody’s seasoned Baa 
bond yields obtained at https://fred.stlouisfed.org/series/BAA and 10-year Treasury yields obtained at 

https://fred.stlouisfed.org/series/DGS10 

This model derives the GDP Z, denoted ZG, by  

• forming a first-order-autoregressive (AR(1)) moving average of past, quarterly, GDP values,  
• taking natural logarithms of the quarterly ratios of GDP to the moving-average of past GDPs,  
• subtracting the 1990-to-date, average value of the logarithmic ratios, thereby producing a cycle-

gap measure, and 
• dividing by the standard deviation of annual changes in the cycle-gap measure. 

Past, ZG values show moderate, cyclical declines in 1990-91 and 2001-02 and a large one in 2007-08 
(Figure 8). 
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Figure 8:  US ZG Series for 1990Q1 to 2018Q4.  Authors calculations using GDP data from the Bureau of 
Economic Analysis of the Department of Commerce obtained at https://fred.stlouisfed.org/series/GDP 

Dividing by a moving average approximates the effect of forming the ratio of GDP to non-financial-
corporate liabilities.  In this process, GDP represents a business cash flow or profit indicator.  Thus, the 
ratio to a moving average provides a proxy measure of cash flow or profits to liabilities.  Over 1990Q1-
2018Q4, an AR(1) moving average of GDP with coefficient of 0.207 achieves the maximum correlation 
coefficient of about 99.5% with US, non-financial-corporate liabilities.  

After deriving the ZA, ZS, and ZG projections implied by a scenario for stock prices, BBB spreads, and GDP, 
the model applies a formula for bridging from the three, MEV Zs to industry and region Zs.  The bridge 
formula results from regressing past, quarterly changes in industry and region Zs on lagged values of 
industry and region Zs, lagged values of quarterly changes in industry and region Zs, and 
contemporaneous and lagged values of quarterly changes in ZG, ZA, and ZS (Table 4).  We assume a 
common model for all sectors and use a pooled sample in estimation. 

Table 4:  Regression Results for PIT Bridge Model 

Variable Type Variable Description 
Point 

Estimate 
Est Std 
Error 

Dependent Industry or Region Z Quarterly Change NM NM 

Explanatory 

Industry or Region Z Lagged -0.05 0.00 
Industry or Region Z Quarterly Change Lagged 0.09 0.02 
ZA Quarterly Change 0.39 0.01 
ZA Quarterly Change Lagged 0.07 0.02 
ZS Quarterly Change 0.22 0.02 
ZS Quarterly Change Lagged 0.00 0.02 
ZG Quarterly Change 0.03 0.02 
ZG Quarterly Change Lagged 0.01 0.02 

Goodness of Fit R-Squared 50%  
Sources:  Authors’ calculations using Z-Risk Engine formulas, CreditEdge data from Moody’s 
Analytics, and GDP data from the Bureau of Economic Analysis of the US Department of 
Commerce. 
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We also run scenarios with only GDP as a MEV driver.  In this case, we apply the bridge formula (Table 5) 
below also obtained by pooled estimation. 

Table 5:  Regression Results for GDP-Only Bridge Model 

Variable Type Variable Description 
Point 

Estimate 
Est Std 
Error 

Dependent Industry or Region Z Quarterly Change NM NM 

Explanatory 

Industry or Region Z Lagged -0.07 0.01 
Industry or Region Z Quarterly Change Lagged 0.15 0.02 
ZG Quarterly Change 0.31 0.02 
ZG Quarterly Change Lagged -0.04 0.02 

Goodness of Fit R-Squared 17%  
Sources:  Authors’ calculations using Z-Risk Engine formulas, CreditEdge data from Moody’s 
Analytics, and GDP data from the Bureau of Economic Analysis of the US Department of 
Commerce. 

 

The bridge model produces industry and region Zs.  However, combined, industry-region Zs enter as inputs 
into the PD, LGD, and EAD models.  These industry-region Zs arise by means of formula (3) presented 
above. 

The trials apply Probit-PD models, Tobit-LGD models, and Probit-CCF models.  For each facility, we draw 
on the relevant, industry-region Z in translating the PDs, LGDs, and credit-conversion factors (CCFs) from 
TTC to PIT values as of each scenario quarter.  

Each quarterly, conditional PD arises from the formula (9)  

 𝑃𝐷|𝑍",),$ = Φ

⎝

⎛−
𝐷𝐷yyz + 𝐷𝐷𝐺𝐴𝑃",),$

-1 − 𝜌",) ⎠

⎞ = Φ

⎝

⎛−
−ΦW&(𝑃𝐷yyz) + -𝜌",)0𝑍",),$ − 𝑍a,",)1

-1 − 𝜌",) ⎠

⎞ (9) 

   
Here, 𝑃𝐷|𝑍",),$denotes the PD in the quarter ending at time t, conditional on 𝑍",),$, which is the industry-
region Z, scaled for a quarterly model, at time t.  Φ represents the standard normal, CDF, 𝑃𝐷yyz  the 
obligor’s, quarterly TTC PD, 𝜌",)  the industry-region, systematic factor’s proportion of overall, quarterly, 
DDD variance, and 𝑍a,",)  the relevant, quarterly, Z-norm value.   In the hybrid estimation, the r parameter 
has a value of 0.0625 (= 0,252) times the PIT value.  

Z-norm accounts for the convexity of the PD function.  To calculate the conditional, PIT PD in a quarter, 
one needs to enter into the Probit function the expected value of DD (PIT) at the end of the quarter.  One 
may obtain this DD as the TTC DD plus the end-of-quarter DDGAP.  This DDGAP is the same as the square 
root of rho times the end-of-quarter Z.  Following a familiar convention, one may start from the TTC PD.  
This PD arises as a long-run average over many cyclical settings.  Due to the PD-function’s convexity, this 
TTC PD exceeds the PD conditional on DD being at its TTC value.  Thus, the negative of the inverse normal 
of the TTC PD will fall short of the TTC DD.  How much less?  By the square root of rho times Z-norm.  
Indeed, this is the way we define Z-norm.  Consequently, rearranging components, one finds that the 
numerator in the far right in (9) produces the needed result -- the TTC DD plus the end-of-quarter, DDGAP. 



September 2019 

20 
 

Conditional ELGDs under the Tobit model arise from the formula (10).   Recall that the LGD model using 
quarterly scaling produces the same result as the model using annual scaling.  The calculations in the trials 
use the annually-scaled model as depicted below. 

 

𝐸𝐿𝐺𝐷|𝑍",),$ = Φ}−
1 −𝑚
𝑠 ~ +𝑚LΦ}

1 −𝑚
𝑠 ~ − Φr−

𝑚
𝑠
sQ

+𝑠 Lϕr−
𝑚
𝑠 s − ϕ}−

1 −𝑚
𝑠 ~Q

𝑚 = 𝑚� +𝑚�𝑍",),$
𝑠 = 𝑒𝑥𝑝0𝑠� + 𝑠�𝑍",),$1
𝑚� = 𝑏𝑎𝑐𝑘𝑠𝑜𝑙𝑣𝑒𝑑	𝑏𝑎𝑠𝑒𝑑	𝑜𝑛	𝑇𝑇𝐶	𝐸𝐿𝐺𝐷
𝑚� = −0.04
𝑠� = −0.91
𝑠� = −0.06

 (10) 

   
Here ϕ (lower-case Φ) denotes the standard-normal, density function, m the Tobit central tendency, s the 
Tobit standard deviation, exp the exponential function, and 𝑚�,	𝑚�, 𝑠�, and 𝑠� parameters in the 
functions determining m and s.  We’ve set the values of all parameters other than 𝑚� to values obtained 
on average in past research.  Then the TTC LGD input determines 𝑚�.  In detailed, LGD modeling, the 
𝑚�	and 𝑠� parameters would arise as functions of facility structural features such as collateralization and 
seniority.  But such structural effects are assumed static, unaffected by credit-cycle conditions and already 
subsumed in the TTC LGD.  Thus, these features need not appear explicitly in these trials.  The coefficient 
values above reflect results of past estimations of Tobit LGD models. In the hybrid runs, we set the values 
of 𝑚� and 𝑠� to 25% of the values shown above. 

The ELGD function is close to linear in the relevant range.  Thus, no Z-norm adjustment occurs. 

Conditional ECCFs arise from formula (11). 

 
𝐸𝐶𝐶𝐹|𝑍",),$ = Φ0𝑐� + 𝑐�𝑍",),$1
𝑐� = 𝑏𝑎𝑐𝑘𝑠𝑜𝑙𝑣𝑒𝑑	𝑏𝑎𝑠𝑒𝑑	𝑜𝑛	𝑇𝑇𝐶	𝐸𝐶𝐶𝐹
𝑐� = −0.04

 (11) 

   
The -0.04 value for 𝑐� reflects past EAD model results for RCFs.  In the hybrid estimations, we set that 
coefficient value to -0.01 (= 0.25 x (-0.04)).  Conditional EADs result from formula (12). 

 𝐸𝐸𝐴𝐷|𝑍",),$ = L ∙ rEU + 𝐸𝐶𝐶𝐹|𝑍",),$ ∙ (100%− 𝐸𝑈)s	 (12) 

   
Here, L denotes the facility limit, which is constant due to the static-portfolio assumption. 

The conditional, PD, LGD, and EAD estimates of conditional determine the conditional ECL estimates as 
follows. 

 𝐸𝐶𝐿|𝑍",),$ = 𝑃𝐷|𝑍",),$ ∙	𝐸𝐿𝐺𝐷|𝑍",),$ ∙ 𝐸𝐸𝐴𝐷|𝑍",),$ 
(13) 

   
The ECL estimates in turn produce estimates of charge-offs and identified impairments (formula (14)). 
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 𝐶𝑂$ =
1

𝑝𝑟_𝑑𝑢𝑟
∙ 𝑆𝑃$W&

𝑆𝑃$ = 𝑆𝑃$W& + 𝐸𝐶𝐿$ − 𝐶𝑂$
 (14) 

   
𝐶𝑂$  denotes charge-offs at time t, 𝑆𝑃$	specific provisions at time t, and 𝑝𝑟_𝑑𝑢𝑟 the average duration of 
identified impairments, set to four quarters in these trials. 

The estimates of book values of loans come from the following formulas. 

 

𝑉$ = 𝑉�,$ + 𝑉l,$
𝑉�,$ = 𝑉� =Y𝐸𝑈�

�

𝐿�

𝑉l,$ = }1 −
1

𝑝𝑟_𝑑𝑢𝑟~
𝑉l,$W& +Y𝑃𝐷�,$

�

𝐸𝐸𝐴𝐷�,$

 (15) 

   
Here 𝑉$ denotes the book value of loans, 𝑉�,$ the value of the good book, 𝑉l,$the value of the bad 
(impaired loan) book, and f a facility identifier.  Due to the static-portfolio assumption, the value of the 
good book remains constant.  We compute it as the sum of the products of limits, 𝐿�, and expected 
utilization rates, 𝐸𝑈�.  The model calculates each quarterly charge-off rate as 𝐶𝑂$ 𝑉$W&⁄ . 

This paper runs the CCAR-2019 baseline and SA scenarios.  The baseline and SA MEV assumptions 
underlying these trials appear below (Table 6). 

Table 6:  CCAR-2019 Economic Assumptions for MEVs Used in the Trials 

Date 
Nominal GDP 

Growth 
10-Year 

Treasury Yield 
BBB Corporate 

Yield 
Dow Jones Total 

Stock Market Index 
2018Q4 4.60 3.00 5.00 25,725 

 Baseline 
2019Q1 4.20 2.90 4.60 26,026 
2019Q2 4.80 3.00 4.80 26,367 
2019Q3 4.40 3.10 4.90 26,687 
2019Q4 4.20 3.20 4.90 26,998 
2020Q1 4.00 3.20 4.90 27,299 
2020Q2 4.00 3.20 4.90 27,603 
2020Q3 3.70 3.20 4.90 27,894 
2020Q4 3.80 3.20 4.90 28,193 
2021Q1 4.30 3.40 5.20 28,529 
2021Q2 4.10 3.50 5.10 28,858 
2021Q3 4.10 3.50 5.20 29,191 
2021Q4 4.10 3.50 5.20 29,527 
2022Q1 4.10 3.60 5.20 29,868 

 Severely Adverse 
2019Q1 -3.50 0.80 5.30 17,836 
2019Q2 -7.70 0.90 6.10 14,694 
2019Q3 -5.70 1.00 6.50 13,317 
2019Q4 -3.40 1.10 6.50 12,862 
2020Q1 -2.10 1.20 6.20 13,462 
2020Q2 0.50 1.20 5.80 14,421 
2020Q3 1.60 1.20 5.50 15,479 
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2020Q4 4.80 1.20 5.10 16,847 
2021Q1 5.40 1.50 5.00 17,788 
2021Q2 5.90 1.60 4.70 19,352 
2021Q3 6.20 1.60 4.40 21,039 
2021Q4 6.40 1.70 4.00 22,940 
2022Q1 6.30 1.80 3.70 25,137 

Source:  Board of Governors of the Federal Reserve System.   Data transcribed from 
https://www.federalreserve.gov/newsevents/pressreleases/files/bcreg20190213a1.p
df 
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